Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alexeq | Unicode version |
Description: Two ways to express substitution of for in . (Contributed by NM, 2-Mar-1995.) |
Ref | Expression |
---|---|
alexeq.1 |
Ref | Expression |
---|---|
alexeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexeq.1 | . . 3 | |
2 | eqeq2 2185 | . . . . 5 | |
3 | 2 | anbi1d 465 | . . . 4 |
4 | 3 | exbidv 1823 | . . 3 |
5 | 2 | imbi1d 231 | . . . 4 |
6 | 5 | albidv 1822 | . . 3 |
7 | sb56 1883 | . . 3 | |
8 | 1, 4, 6, 7 | vtoclb 2792 | . 2 |
9 | 8 | bicomi 132 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wal 1351 wceq 1353 wex 1490 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: ceqex 2862 |
Copyright terms: Public domain | W3C validator |