ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexeq Unicode version

Theorem alexeq 2852
Description: Two ways to express substitution of  A for  x in  ph. (Contributed by NM, 2-Mar-1995.)
Hypothesis
Ref Expression
alexeq.1  |-  A  e. 
_V
Assertion
Ref Expression
alexeq  |-  ( A. x ( x  =  A  ->  ph )  <->  E. x
( x  =  A  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem alexeq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 alexeq.1 . . 3  |-  A  e. 
_V
2 eqeq2 2175 . . . . 5  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
32anbi1d 461 . . . 4  |-  ( y  =  A  ->  (
( x  =  y  /\  ph )  <->  ( x  =  A  /\  ph )
) )
43exbidv 1813 . . 3  |-  ( y  =  A  ->  ( E. x ( x  =  y  /\  ph )  <->  E. x ( x  =  A  /\  ph )
) )
52imbi1d 230 . . . 4  |-  ( y  =  A  ->  (
( x  =  y  ->  ph )  <->  ( x  =  A  ->  ph )
) )
65albidv 1812 . . 3  |-  ( y  =  A  ->  ( A. x ( x  =  y  ->  ph )  <->  A. x
( x  =  A  ->  ph ) ) )
7 sb56 1873 . . 3  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
81, 4, 6, 7vtoclb 2783 . 2  |-  ( E. x ( x  =  A  /\  ph )  <->  A. x ( x  =  A  ->  ph ) )
98bicomi 131 1  |-  ( A. x ( x  =  A  ->  ph )  <->  E. x
( x  =  A  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  ceqex  2853
  Copyright terms: Public domain W3C validator