| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alexeq | Unicode version | ||
| Description: Two ways to express
substitution of |
| Ref | Expression |
|---|---|
| alexeq.1 |
|
| Ref | Expression |
|---|---|
| alexeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexeq.1 |
. . 3
| |
| 2 | eqeq2 2215 |
. . . . 5
| |
| 3 | 2 | anbi1d 465 |
. . . 4
|
| 4 | 3 | exbidv 1848 |
. . 3
|
| 5 | 2 | imbi1d 231 |
. . . 4
|
| 6 | 5 | albidv 1847 |
. . 3
|
| 7 | sb56 1909 |
. . 3
| |
| 8 | 1, 4, 6, 7 | vtoclb 2830 |
. 2
|
| 9 | 8 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: ceqex 2900 |
| Copyright terms: Public domain | W3C validator |