Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r2alf | GIF version |
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
r2alf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
r2alf | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) | |
2 | r2alf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
3 | 2 | nfcri 2306 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
4 | 3 | 19.21 1576 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
5 | impexp 261 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) | |
6 | 5 | albii 1463 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) |
7 | df-ral 2453 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜑)) | |
8 | 7 | imbi2i 225 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
9 | 4, 6, 8 | 3bitr4i 211 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
10 | 9 | albii 1463 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
11 | 1, 10 | bitr4i 186 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 ∈ wcel 2141 Ⅎwnfc 2299 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: r2al 2489 ralcomf 2631 |
Copyright terms: Public domain | W3C validator |