ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2alf GIF version

Theorem r2alf 2483
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1 𝑦𝐴
Assertion
Ref Expression
r2alf (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem r2alf
StepHypRef Expression
1 df-ral 2449 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 r2alf.1 . . . . . 6 𝑦𝐴
32nfcri 2302 . . . . 5 𝑦 𝑥𝐴
4319.21 1571 . . . 4 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
5 impexp 261 . . . . 5 (((𝑥𝐴𝑦𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑦𝐵𝜑)))
65albii 1458 . . . 4 (∀𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)))
7 df-ral 2449 . . . . 5 (∀𝑦𝐵 𝜑 ↔ ∀𝑦(𝑦𝐵𝜑))
87imbi2i 225 . . . 4 ((𝑥𝐴 → ∀𝑦𝐵 𝜑) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
94, 6, 83bitr4i 211 . . 3 (∀𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ (𝑥𝐴 → ∀𝑦𝐵 𝜑))
109albii 1458 . 2 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑))
111, 10bitr4i 186 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wcel 2136  wnfc 2295  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449
This theorem is referenced by:  r2al  2485  ralcomf  2627
  Copyright terms: Public domain W3C validator