![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r2alf | GIF version |
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
r2alf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
r2alf | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2460 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) | |
2 | r2alf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
3 | 2 | nfcri 2313 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
4 | 3 | 19.21 1583 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
5 | impexp 263 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) | |
6 | 5 | albii 1470 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) |
7 | df-ral 2460 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜑)) | |
8 | 7 | imbi2i 226 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
9 | 4, 6, 8 | 3bitr4i 212 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
10 | 9 | albii 1470 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
11 | 1, 10 | bitr4i 187 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∈ wcel 2148 Ⅎwnfc 2306 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 |
This theorem is referenced by: r2al 2496 ralcomf 2638 |
Copyright terms: Public domain | W3C validator |