Step | Hyp | Ref
| Expression |
1 | | anandi 585 |
. . . . 5
⊢ ((𝜑 ∧ (𝜓 ∧ [𝑦 / 𝑥]𝜓)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜓))) |
2 | 1 | imbi1i 237 |
. . . 4
⊢ (((𝜑 ∧ (𝜓 ∧ [𝑦 / 𝑥]𝜓)) → 𝑥 = 𝑦) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜓)) → 𝑥 = 𝑦)) |
3 | | impexp 261 |
. . . 4
⊢ (((𝜑 ∧ (𝜓 ∧ [𝑦 / 𝑥]𝜓)) → 𝑥 = 𝑦) ↔ (𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
4 | | sban 1948 |
. . . . . . 7
⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
5 | | moanim.1 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜑 |
6 | 5 | sbf 1770 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
7 | 6 | anbi1i 455 |
. . . . . . 7
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ (𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
8 | 4, 7 | bitr2i 184 |
. . . . . 6
⊢ ((𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) |
9 | 8 | anbi2i 454 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜓)) ↔ ((𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥](𝜑 ∧ 𝜓))) |
10 | 9 | imbi1i 237 |
. . . 4
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜓)) → 𝑥 = 𝑦) ↔ (((𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) → 𝑥 = 𝑦)) |
11 | 2, 3, 10 | 3bitr3i 209 |
. . 3
⊢ ((𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) ↔ (((𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) → 𝑥 = 𝑦)) |
12 | 11 | 2albii 1464 |
. 2
⊢
(∀𝑥∀𝑦(𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑥∀𝑦(((𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) → 𝑥 = 𝑦)) |
13 | 5 | 19.21 1576 |
. . 3
⊢
(∀𝑥(𝜑 → ∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
14 | | 19.21v 1866 |
. . . 4
⊢
(∀𝑦(𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
15 | 14 | albii 1463 |
. . 3
⊢
(∀𝑥∀𝑦(𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑥(𝜑 → ∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
16 | | ax-17 1519 |
. . . . 5
⊢ (𝜓 → ∀𝑦𝜓) |
17 | 16 | mo3h 2072 |
. . . 4
⊢
(∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
18 | 17 | imbi2i 225 |
. . 3
⊢ ((𝜑 → ∃*𝑥𝜓) ↔ (𝜑 → ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
19 | 13, 15, 18 | 3bitr4ri 212 |
. 2
⊢ ((𝜑 → ∃*𝑥𝜓) ↔ ∀𝑥∀𝑦(𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
20 | | ax-17 1519 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ∀𝑦(𝜑 ∧ 𝜓)) |
21 | 20 | mo3h 2072 |
. 2
⊢
(∃*𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥∀𝑦(((𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) → 𝑥 = 𝑦)) |
22 | 12, 19, 21 | 3bitr4ri 212 |
1
⊢
(∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |