Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralm | GIF version |
Description: Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.) |
Ref | Expression |
---|---|
ralm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2449 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 1 | imbi2i 225 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) |
3 | 19.38 1664 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) | |
4 | 2, 3 | sylbi 120 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) |
5 | pm2.43 53 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → 𝜑)) | |
6 | 5 | alimi 1443 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
7 | 4, 6 | syl 14 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
8 | 7, 1 | sylibr 133 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥 ∈ 𝐴 𝜑) |
9 | ax-1 6 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
10 | 8, 9 | impbii 125 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-ral 2449 |
This theorem is referenced by: raaan 3515 |
Copyright terms: Public domain | W3C validator |