| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralm | GIF version | ||
| Description: Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| ralm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral 2480 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | 1 | imbi2i 226 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) | 
| 3 | 19.38 1690 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) | |
| 4 | 2, 3 | sylbi 121 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) | 
| 5 | pm2.43 53 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 6 | 5 | alimi 1469 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | 
| 7 | 4, 6 | syl 14 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | 
| 8 | 7, 1 | sylibr 134 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥 ∈ 𝐴 𝜑) | 
| 9 | ax-1 6 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
| 10 | 8, 9 | impbii 126 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: raaan 3556 | 
| Copyright terms: Public domain | W3C validator |