ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbii GIF version

Theorem 2ralbii 2513
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
ralbii.1 (𝜑𝜓)
Assertion
Ref Expression
2ralbii (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2ralbii
StepHypRef Expression
1 ralbii.1 . . 3 (𝜑𝜓)
21ralbii 2511 . 2 (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜓)
32ralbii 2511 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-ral 2488
This theorem is referenced by:  rmo4f  2970  ordsoexmid  4608  cnvsom  5223  fununi  5336  tpossym  6352  axpre-suploc  7997  issubm  13222  isbasis2g  14435  ivthdich  15043
  Copyright terms: Public domain W3C validator