ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbii GIF version

Theorem 2ralbii 2417
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
ralbii.1 (𝜑𝜓)
Assertion
Ref Expression
2ralbii (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2ralbii
StepHypRef Expression
1 ralbii.1 . . 3 (𝜑𝜓)
21ralbii 2415 . 2 (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜓)
32ralbii 2415 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wral 2390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-4 1470  ax-17 1489
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-ral 2395
This theorem is referenced by:  rmo4f  2851  ordsoexmid  4437  cnvsom  5040  fununi  5149  tpossym  6127  isbasis2g  12055
  Copyright terms: Public domain W3C validator