ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc GIF version

Theorem axpre-suploc 8097
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8128. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem axpre-suploc
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . 3 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 𝑥𝐴)
2 eleq1w 2290 . . . 4 (𝑥 = 𝑑 → (𝑥𝐴𝑑𝐴))
32cbvexv 1965 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑑 𝑑𝐴)
41, 3sylib 122 . 2 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑑 𝑑𝐴)
5 simplll 533 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝐴 ⊆ ℝ)
6 simpr 110 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝑑𝐴)
7 simplrl 535 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
8 breq2 4087 . . . . . . . 8 (𝑎 = 𝑥 → (𝑏 < 𝑎𝑏 < 𝑥))
98ralbidv 2530 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 𝑏 < 𝑎 ↔ ∀𝑏𝐴 𝑏 < 𝑥))
109cbvrexv 2766 . . . . . 6 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥)
11 breq1 4086 . . . . . . . 8 (𝑏 = 𝑦 → (𝑏 < 𝑥𝑦 < 𝑥))
1211cbvralv 2765 . . . . . . 7 (∀𝑏𝐴 𝑏 < 𝑥 ↔ ∀𝑦𝐴 𝑦 < 𝑥)
1312rexbii 2537 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
1410, 13bitri 184 . . . . 5 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
157, 14sylibr 134 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎)
16 simplrr 536 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
17 breq1 4086 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
18 breq1 4086 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑐𝑥 < 𝑐))
1918rexbidv 2531 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑐𝐴 𝑎 < 𝑐 ↔ ∃𝑐𝐴 𝑥 < 𝑐))
2019orbi1d 796 . . . . . . . 8 (𝑎 = 𝑥 → ((∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
2117, 20imbi12d 234 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏))))
22 breq2 4087 . . . . . . . 8 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
23 breq2 4087 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑐 < 𝑏𝑐 < 𝑦))
2423ralbidv 2530 . . . . . . . . 9 (𝑏 = 𝑦 → (∀𝑐𝐴 𝑐 < 𝑏 ↔ ∀𝑐𝐴 𝑐 < 𝑦))
2524orbi2d 795 . . . . . . . 8 (𝑏 = 𝑦 → ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
2622, 25imbi12d 234 . . . . . . 7 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦))))
2721, 26cbvral2v 2778 . . . . . 6 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
28 breq2 4087 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑥 < 𝑐𝑥 < 𝑧))
2928cbvrexv 2766 . . . . . . . . 9 (∃𝑐𝐴 𝑥 < 𝑐 ↔ ∃𝑧𝐴 𝑥 < 𝑧)
30 breq1 4086 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 < 𝑦𝑧 < 𝑦))
3130cbvralv 2765 . . . . . . . . 9 (∀𝑐𝐴 𝑐 < 𝑦 ↔ ∀𝑧𝐴 𝑧 < 𝑦)
3229, 31orbi12i 769 . . . . . . . 8 ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦) ↔ (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
3332imbi2i 226 . . . . . . 7 ((𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
34332ralbii 2538 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3527, 34bitri 184 . . . . 5 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3616, 35sylibr 134 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
37 eqid 2229 . . . 4 {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴} = {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴}
385, 6, 15, 36, 37axpre-suploclemres 8096 . . 3 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)))
3917notbid 671 . . . . . . . 8 (𝑎 = 𝑥 → (¬ 𝑎 < 𝑏 ↔ ¬ 𝑥 < 𝑏))
4039ralbidv 2530 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑥 < 𝑏))
418imbi1d 231 . . . . . . . 8 (𝑎 = 𝑥 → ((𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4241ralbidv 2530 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4340, 42anbi12d 473 . . . . . 6 (𝑎 = 𝑥 → ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐))))
4443cbvrexv 2766 . . . . 5 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4522notbid 671 . . . . . . . 8 (𝑏 = 𝑦 → (¬ 𝑥 < 𝑏 ↔ ¬ 𝑥 < 𝑦))
4645cbvralv 2765 . . . . . . 7 (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
47 breq1 4086 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏 < 𝑐𝑦 < 𝑐))
4847rexbidv 2531 . . . . . . . . 9 (𝑏 = 𝑦 → (∃𝑐𝐴 𝑏 < 𝑐 ↔ ∃𝑐𝐴 𝑦 < 𝑐))
4911, 48imbi12d 234 . . . . . . . 8 (𝑏 = 𝑦 → ((𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5049cbvralv 2765 . . . . . . 7 (∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐))
5146, 50anbi12i 460 . . . . . 6 ((∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5251rexbii 2537 . . . . 5 (∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5344, 52bitri 184 . . . 4 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
54 breq2 4087 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑦 < 𝑐𝑦 < 𝑧))
5554cbvrexv 2766 . . . . . . . 8 (∃𝑐𝐴 𝑦 < 𝑐 ↔ ∃𝑧𝐴 𝑦 < 𝑧)
5655imbi2i 226 . . . . . . 7 ((𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5756ralbii 2536 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5857anbi2i 457 . . . . 5 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5958rexbii 2537 . . . 4 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6053, 59bitri 184 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6138, 60sylib 122 . 2 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
624, 61exlimddv 1945 1 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  cop 3669   class class class wbr 4083  Rcnr 7492  0Rc0r 7493  cr 8006   < cltrr 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-2o 6569  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-enq0 7619  df-nq0 7620  df-0nq0 7621  df-plq0 7622  df-mq0 7623  df-inp 7661  df-i1p 7662  df-iplp 7663  df-imp 7664  df-iltp 7665  df-enr 7921  df-nr 7922  df-plr 7923  df-mr 7924  df-ltr 7925  df-0r 7926  df-1r 7927  df-m1r 7928  df-r 8017  df-lt 8020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator