ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc GIF version

Theorem axpre-suploc 7864
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7895. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem axpre-suploc
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 525 . . 3 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 𝑥𝐴)
2 eleq1w 2231 . . . 4 (𝑥 = 𝑑 → (𝑥𝐴𝑑𝐴))
32cbvexv 1911 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑑 𝑑𝐴)
41, 3sylib 121 . 2 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑑 𝑑𝐴)
5 simplll 528 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝐴 ⊆ ℝ)
6 simpr 109 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝑑𝐴)
7 simplrl 530 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
8 breq2 3993 . . . . . . . 8 (𝑎 = 𝑥 → (𝑏 < 𝑎𝑏 < 𝑥))
98ralbidv 2470 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 𝑏 < 𝑎 ↔ ∀𝑏𝐴 𝑏 < 𝑥))
109cbvrexv 2697 . . . . . 6 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥)
11 breq1 3992 . . . . . . . 8 (𝑏 = 𝑦 → (𝑏 < 𝑥𝑦 < 𝑥))
1211cbvralv 2696 . . . . . . 7 (∀𝑏𝐴 𝑏 < 𝑥 ↔ ∀𝑦𝐴 𝑦 < 𝑥)
1312rexbii 2477 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
1410, 13bitri 183 . . . . 5 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
157, 14sylibr 133 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎)
16 simplrr 531 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
17 breq1 3992 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
18 breq1 3992 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑐𝑥 < 𝑐))
1918rexbidv 2471 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑐𝐴 𝑎 < 𝑐 ↔ ∃𝑐𝐴 𝑥 < 𝑐))
2019orbi1d 786 . . . . . . . 8 (𝑎 = 𝑥 → ((∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
2117, 20imbi12d 233 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏))))
22 breq2 3993 . . . . . . . 8 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
23 breq2 3993 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑐 < 𝑏𝑐 < 𝑦))
2423ralbidv 2470 . . . . . . . . 9 (𝑏 = 𝑦 → (∀𝑐𝐴 𝑐 < 𝑏 ↔ ∀𝑐𝐴 𝑐 < 𝑦))
2524orbi2d 785 . . . . . . . 8 (𝑏 = 𝑦 → ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
2622, 25imbi12d 233 . . . . . . 7 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦))))
2721, 26cbvral2v 2709 . . . . . 6 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
28 breq2 3993 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑥 < 𝑐𝑥 < 𝑧))
2928cbvrexv 2697 . . . . . . . . 9 (∃𝑐𝐴 𝑥 < 𝑐 ↔ ∃𝑧𝐴 𝑥 < 𝑧)
30 breq1 3992 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 < 𝑦𝑧 < 𝑦))
3130cbvralv 2696 . . . . . . . . 9 (∀𝑐𝐴 𝑐 < 𝑦 ↔ ∀𝑧𝐴 𝑧 < 𝑦)
3229, 31orbi12i 759 . . . . . . . 8 ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦) ↔ (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
3332imbi2i 225 . . . . . . 7 ((𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
34332ralbii 2478 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3527, 34bitri 183 . . . . 5 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3616, 35sylibr 133 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
37 eqid 2170 . . . 4 {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴} = {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴}
385, 6, 15, 36, 37axpre-suploclemres 7863 . . 3 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)))
3917notbid 662 . . . . . . . 8 (𝑎 = 𝑥 → (¬ 𝑎 < 𝑏 ↔ ¬ 𝑥 < 𝑏))
4039ralbidv 2470 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑥 < 𝑏))
418imbi1d 230 . . . . . . . 8 (𝑎 = 𝑥 → ((𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4241ralbidv 2470 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4340, 42anbi12d 470 . . . . . 6 (𝑎 = 𝑥 → ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐))))
4443cbvrexv 2697 . . . . 5 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4522notbid 662 . . . . . . . 8 (𝑏 = 𝑦 → (¬ 𝑥 < 𝑏 ↔ ¬ 𝑥 < 𝑦))
4645cbvralv 2696 . . . . . . 7 (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
47 breq1 3992 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏 < 𝑐𝑦 < 𝑐))
4847rexbidv 2471 . . . . . . . . 9 (𝑏 = 𝑦 → (∃𝑐𝐴 𝑏 < 𝑐 ↔ ∃𝑐𝐴 𝑦 < 𝑐))
4911, 48imbi12d 233 . . . . . . . 8 (𝑏 = 𝑦 → ((𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5049cbvralv 2696 . . . . . . 7 (∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐))
5146, 50anbi12i 457 . . . . . 6 ((∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5251rexbii 2477 . . . . 5 (∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5344, 52bitri 183 . . . 4 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
54 breq2 3993 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑦 < 𝑐𝑦 < 𝑧))
5554cbvrexv 2697 . . . . . . . 8 (∃𝑐𝐴 𝑦 < 𝑐 ↔ ∃𝑧𝐴 𝑦 < 𝑧)
5655imbi2i 225 . . . . . . 7 ((𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5756ralbii 2476 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5857anbi2i 454 . . . . 5 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5958rexbii 2477 . . . 4 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6053, 59bitri 183 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6138, 60sylib 121 . 2 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
624, 61exlimddv 1891 1 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  wex 1485  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121  cop 3586   class class class wbr 3989  Rcnr 7259  0Rc0r 7260  cr 7773   < cltrr 7778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-iltp 7432  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-ltr 7692  df-0r 7693  df-1r 7694  df-m1r 7695  df-r 7784  df-lt 7787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator