ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc GIF version

Theorem axpre-suploc 7843
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7874. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem axpre-suploc
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 520 . . 3 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 𝑥𝐴)
2 eleq1w 2227 . . . 4 (𝑥 = 𝑑 → (𝑥𝐴𝑑𝐴))
32cbvexv 1906 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑑 𝑑𝐴)
41, 3sylib 121 . 2 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑑 𝑑𝐴)
5 simplll 523 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝐴 ⊆ ℝ)
6 simpr 109 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝑑𝐴)
7 simplrl 525 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
8 breq2 3986 . . . . . . . 8 (𝑎 = 𝑥 → (𝑏 < 𝑎𝑏 < 𝑥))
98ralbidv 2466 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 𝑏 < 𝑎 ↔ ∀𝑏𝐴 𝑏 < 𝑥))
109cbvrexv 2693 . . . . . 6 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥)
11 breq1 3985 . . . . . . . 8 (𝑏 = 𝑦 → (𝑏 < 𝑥𝑦 < 𝑥))
1211cbvralv 2692 . . . . . . 7 (∀𝑏𝐴 𝑏 < 𝑥 ↔ ∀𝑦𝐴 𝑦 < 𝑥)
1312rexbii 2473 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
1410, 13bitri 183 . . . . 5 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
157, 14sylibr 133 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎)
16 simplrr 526 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
17 breq1 3985 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
18 breq1 3985 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑐𝑥 < 𝑐))
1918rexbidv 2467 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑐𝐴 𝑎 < 𝑐 ↔ ∃𝑐𝐴 𝑥 < 𝑐))
2019orbi1d 781 . . . . . . . 8 (𝑎 = 𝑥 → ((∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
2117, 20imbi12d 233 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏))))
22 breq2 3986 . . . . . . . 8 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
23 breq2 3986 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑐 < 𝑏𝑐 < 𝑦))
2423ralbidv 2466 . . . . . . . . 9 (𝑏 = 𝑦 → (∀𝑐𝐴 𝑐 < 𝑏 ↔ ∀𝑐𝐴 𝑐 < 𝑦))
2524orbi2d 780 . . . . . . . 8 (𝑏 = 𝑦 → ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
2622, 25imbi12d 233 . . . . . . 7 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦))))
2721, 26cbvral2v 2705 . . . . . 6 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
28 breq2 3986 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑥 < 𝑐𝑥 < 𝑧))
2928cbvrexv 2693 . . . . . . . . 9 (∃𝑐𝐴 𝑥 < 𝑐 ↔ ∃𝑧𝐴 𝑥 < 𝑧)
30 breq1 3985 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 < 𝑦𝑧 < 𝑦))
3130cbvralv 2692 . . . . . . . . 9 (∀𝑐𝐴 𝑐 < 𝑦 ↔ ∀𝑧𝐴 𝑧 < 𝑦)
3229, 31orbi12i 754 . . . . . . . 8 ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦) ↔ (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
3332imbi2i 225 . . . . . . 7 ((𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
34332ralbii 2474 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3527, 34bitri 183 . . . . 5 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3616, 35sylibr 133 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
37 eqid 2165 . . . 4 {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴} = {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴}
385, 6, 15, 36, 37axpre-suploclemres 7842 . . 3 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)))
3917notbid 657 . . . . . . . 8 (𝑎 = 𝑥 → (¬ 𝑎 < 𝑏 ↔ ¬ 𝑥 < 𝑏))
4039ralbidv 2466 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑥 < 𝑏))
418imbi1d 230 . . . . . . . 8 (𝑎 = 𝑥 → ((𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4241ralbidv 2466 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4340, 42anbi12d 465 . . . . . 6 (𝑎 = 𝑥 → ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐))))
4443cbvrexv 2693 . . . . 5 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4522notbid 657 . . . . . . . 8 (𝑏 = 𝑦 → (¬ 𝑥 < 𝑏 ↔ ¬ 𝑥 < 𝑦))
4645cbvralv 2692 . . . . . . 7 (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
47 breq1 3985 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏 < 𝑐𝑦 < 𝑐))
4847rexbidv 2467 . . . . . . . . 9 (𝑏 = 𝑦 → (∃𝑐𝐴 𝑏 < 𝑐 ↔ ∃𝑐𝐴 𝑦 < 𝑐))
4911, 48imbi12d 233 . . . . . . . 8 (𝑏 = 𝑦 → ((𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5049cbvralv 2692 . . . . . . 7 (∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐))
5146, 50anbi12i 456 . . . . . 6 ((∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5251rexbii 2473 . . . . 5 (∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5344, 52bitri 183 . . . 4 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
54 breq2 3986 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑦 < 𝑐𝑦 < 𝑧))
5554cbvrexv 2693 . . . . . . . 8 (∃𝑐𝐴 𝑦 < 𝑐 ↔ ∃𝑧𝐴 𝑦 < 𝑧)
5655imbi2i 225 . . . . . . 7 ((𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5756ralbii 2472 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5857anbi2i 453 . . . . 5 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5958rexbii 2473 . . . 4 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6053, 59bitri 183 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6138, 60sylib 121 . 2 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
624, 61exlimddv 1886 1 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  wex 1480  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116  cop 3579   class class class wbr 3982  Rcnr 7238  0Rc0r 7239  cr 7752   < cltrr 7757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674  df-r 7763  df-lt 7766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator