ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc GIF version

Theorem axpre-suploc 7986
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8017. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem axpre-suploc
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . 3 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 𝑥𝐴)
2 eleq1w 2257 . . . 4 (𝑥 = 𝑑 → (𝑥𝐴𝑑𝐴))
32cbvexv 1933 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑑 𝑑𝐴)
41, 3sylib 122 . 2 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑑 𝑑𝐴)
5 simplll 533 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝐴 ⊆ ℝ)
6 simpr 110 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝑑𝐴)
7 simplrl 535 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
8 breq2 4038 . . . . . . . 8 (𝑎 = 𝑥 → (𝑏 < 𝑎𝑏 < 𝑥))
98ralbidv 2497 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 𝑏 < 𝑎 ↔ ∀𝑏𝐴 𝑏 < 𝑥))
109cbvrexv 2730 . . . . . 6 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥)
11 breq1 4037 . . . . . . . 8 (𝑏 = 𝑦 → (𝑏 < 𝑥𝑦 < 𝑥))
1211cbvralv 2729 . . . . . . 7 (∀𝑏𝐴 𝑏 < 𝑥 ↔ ∀𝑦𝐴 𝑦 < 𝑥)
1312rexbii 2504 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
1410, 13bitri 184 . . . . 5 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
157, 14sylibr 134 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎)
16 simplrr 536 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
17 breq1 4037 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
18 breq1 4037 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑐𝑥 < 𝑐))
1918rexbidv 2498 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑐𝐴 𝑎 < 𝑐 ↔ ∃𝑐𝐴 𝑥 < 𝑐))
2019orbi1d 792 . . . . . . . 8 (𝑎 = 𝑥 → ((∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
2117, 20imbi12d 234 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏))))
22 breq2 4038 . . . . . . . 8 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
23 breq2 4038 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑐 < 𝑏𝑐 < 𝑦))
2423ralbidv 2497 . . . . . . . . 9 (𝑏 = 𝑦 → (∀𝑐𝐴 𝑐 < 𝑏 ↔ ∀𝑐𝐴 𝑐 < 𝑦))
2524orbi2d 791 . . . . . . . 8 (𝑏 = 𝑦 → ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
2622, 25imbi12d 234 . . . . . . 7 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦))))
2721, 26cbvral2v 2742 . . . . . 6 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
28 breq2 4038 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑥 < 𝑐𝑥 < 𝑧))
2928cbvrexv 2730 . . . . . . . . 9 (∃𝑐𝐴 𝑥 < 𝑐 ↔ ∃𝑧𝐴 𝑥 < 𝑧)
30 breq1 4037 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 < 𝑦𝑧 < 𝑦))
3130cbvralv 2729 . . . . . . . . 9 (∀𝑐𝐴 𝑐 < 𝑦 ↔ ∀𝑧𝐴 𝑧 < 𝑦)
3229, 31orbi12i 765 . . . . . . . 8 ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦) ↔ (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
3332imbi2i 226 . . . . . . 7 ((𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
34332ralbii 2505 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3527, 34bitri 184 . . . . 5 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3616, 35sylibr 134 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
37 eqid 2196 . . . 4 {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴} = {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴}
385, 6, 15, 36, 37axpre-suploclemres 7985 . . 3 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)))
3917notbid 668 . . . . . . . 8 (𝑎 = 𝑥 → (¬ 𝑎 < 𝑏 ↔ ¬ 𝑥 < 𝑏))
4039ralbidv 2497 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑥 < 𝑏))
418imbi1d 231 . . . . . . . 8 (𝑎 = 𝑥 → ((𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4241ralbidv 2497 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4340, 42anbi12d 473 . . . . . 6 (𝑎 = 𝑥 → ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐))))
4443cbvrexv 2730 . . . . 5 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4522notbid 668 . . . . . . . 8 (𝑏 = 𝑦 → (¬ 𝑥 < 𝑏 ↔ ¬ 𝑥 < 𝑦))
4645cbvralv 2729 . . . . . . 7 (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
47 breq1 4037 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏 < 𝑐𝑦 < 𝑐))
4847rexbidv 2498 . . . . . . . . 9 (𝑏 = 𝑦 → (∃𝑐𝐴 𝑏 < 𝑐 ↔ ∃𝑐𝐴 𝑦 < 𝑐))
4911, 48imbi12d 234 . . . . . . . 8 (𝑏 = 𝑦 → ((𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5049cbvralv 2729 . . . . . . 7 (∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐))
5146, 50anbi12i 460 . . . . . 6 ((∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5251rexbii 2504 . . . . 5 (∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5344, 52bitri 184 . . . 4 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
54 breq2 4038 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑦 < 𝑐𝑦 < 𝑧))
5554cbvrexv 2730 . . . . . . . 8 (∃𝑐𝐴 𝑦 < 𝑐 ↔ ∃𝑧𝐴 𝑦 < 𝑧)
5655imbi2i 226 . . . . . . 7 ((𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5756ralbii 2503 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5857anbi2i 457 . . . . 5 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5958rexbii 2504 . . . 4 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6053, 59bitri 184 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6138, 60sylib 122 . 2 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
624, 61exlimddv 1913 1 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157  cop 3626   class class class wbr 4034  Rcnr 7381  0Rc0r 7382  cr 7895   < cltrr 7900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-imp 7553  df-iltp 7554  df-enr 7810  df-nr 7811  df-plr 7812  df-mr 7813  df-ltr 7814  df-0r 7815  df-1r 7816  df-m1r 7817  df-r 7906  df-lt 7909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator