![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpossym | GIF version |
Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tpossym | ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposfn 6298 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐴) → tpos 𝐹 Fn (𝐴 × 𝐴)) | |
2 | eqfnov2 6004 | . . 3 ⊢ ((tpos 𝐹 Fn (𝐴 × 𝐴) ∧ 𝐹 Fn (𝐴 × 𝐴)) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦))) | |
3 | 1, 2 | mpancom 422 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦))) |
4 | eqcom 2191 | . . . 4 ⊢ ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦)) | |
5 | vex 2755 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | vex 2755 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | ovtposg 6284 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥)) | |
8 | 5, 6, 7 | mp2an 426 | . . . . 5 ⊢ (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥) |
9 | 8 | eqeq2i 2200 | . . . 4 ⊢ ((𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
10 | 4, 9 | bitri 184 | . . 3 ⊢ ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
11 | 10 | 2ralbii 2498 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
12 | 3, 11 | bitrdi 196 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∀wral 2468 Vcvv 2752 × cxp 4642 Fn wfn 5230 (class class class)co 5896 tpos ctpos 6269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fo 5241 df-fv 5243 df-ov 5899 df-tpos 6270 |
This theorem is referenced by: xmettpos 14327 |
Copyright terms: Public domain | W3C validator |