ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpossym GIF version

Theorem tpossym 6267
Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tpossym (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem tpossym
StepHypRef Expression
1 tposfn 6264 . . 3 (𝐹 Fn (𝐴 × 𝐴) → tpos 𝐹 Fn (𝐴 × 𝐴))
2 eqfnov2 5972 . . 3 ((tpos 𝐹 Fn (𝐴 × 𝐴) ∧ 𝐹 Fn (𝐴 × 𝐴)) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦)))
31, 2mpancom 422 . 2 (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦)))
4 eqcom 2177 . . . 4 ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦))
5 vex 2738 . . . . . 6 𝑥 ∈ V
6 vex 2738 . . . . . 6 𝑦 ∈ V
7 ovtposg 6250 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥))
85, 6, 7mp2an 426 . . . . 5 (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥)
98eqeq2i 2186 . . . 4 ((𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
104, 9bitri 184 . . 3 ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
11102ralbii 2483 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
123, 11bitrdi 196 1 (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2146  wral 2453  Vcvv 2735   × cxp 4618   Fn wfn 5203  (class class class)co 5865  tpos ctpos 6235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fo 5214  df-fv 5216  df-ov 5868  df-tpos 6236
This theorem is referenced by:  xmettpos  13421
  Copyright terms: Public domain W3C validator