Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpossym | GIF version |
Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
tpossym | ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposfn 6252 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐴) → tpos 𝐹 Fn (𝐴 × 𝐴)) | |
2 | eqfnov2 5960 | . . 3 ⊢ ((tpos 𝐹 Fn (𝐴 × 𝐴) ∧ 𝐹 Fn (𝐴 × 𝐴)) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦))) | |
3 | 1, 2 | mpancom 420 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦))) |
4 | eqcom 2172 | . . . 4 ⊢ ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦)) | |
5 | vex 2733 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | vex 2733 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | ovtposg 6238 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥)) | |
8 | 5, 6, 7 | mp2an 424 | . . . . 5 ⊢ (𝑥tpos 𝐹𝑦) = (𝑦𝐹𝑥) |
9 | 8 | eqeq2i 2181 | . . . 4 ⊢ ((𝑥𝐹𝑦) = (𝑥tpos 𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
10 | 4, 9 | bitri 183 | . . 3 ⊢ ((𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
11 | 10 | 2ralbii 2478 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥tpos 𝐹𝑦) = (𝑥𝐹𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
12 | 3, 11 | bitrdi 195 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 × cxp 4609 Fn wfn 5193 (class class class)co 5853 tpos ctpos 6223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-ov 5856 df-tpos 6224 |
This theorem is referenced by: xmettpos 13164 |
Copyright terms: Public domain | W3C validator |