Step | Hyp | Ref
| Expression |
1 | | df-submnd 12857 |
. . . 4
β’ SubMnd =
(π β Mnd β¦
{π‘ β π«
(Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)}) |
2 | | fveq2 5517 |
. . . . . 6
β’ (π = π β (Baseβπ) = (Baseβπ)) |
3 | 2 | pweqd 3582 |
. . . . 5
β’ (π = π β π« (Baseβπ) = π« (Baseβπ)) |
4 | | fveq2 5517 |
. . . . . . 7
β’ (π = π β (0gβπ) = (0gβπ)) |
5 | 4 | eleq1d 2246 |
. . . . . 6
β’ (π = π β ((0gβπ) β π‘ β (0gβπ) β π‘)) |
6 | | fveq2 5517 |
. . . . . . . . 9
β’ (π = π β (+gβπ) = (+gβπ)) |
7 | 6 | oveqd 5894 |
. . . . . . . 8
β’ (π = π β (π₯(+gβπ)π¦) = (π₯(+gβπ)π¦)) |
8 | 7 | eleq1d 2246 |
. . . . . . 7
β’ (π = π β ((π₯(+gβπ)π¦) β π‘ β (π₯(+gβπ)π¦) β π‘)) |
9 | 8 | 2ralbidv 2501 |
. . . . . 6
β’ (π = π β (βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘ β βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)) |
10 | 5, 9 | anbi12d 473 |
. . . . 5
β’ (π = π β (((0gβπ) β π‘ β§ βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘) β ((0gβπ) β π‘ β§ βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘))) |
11 | 3, 10 | rabeqbidv 2734 |
. . . 4
β’ (π = π β {π‘ β π« (Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)} = {π‘ β π« (Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)}) |
12 | | id 19 |
. . . 4
β’ (π β Mnd β π β Mnd) |
13 | | basfn 12522 |
. . . . . . 7
β’ Base Fn
V |
14 | | elex 2750 |
. . . . . . 7
β’ (π β Mnd β π β V) |
15 | | funfvex 5534 |
. . . . . . . 8
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
16 | 15 | funfni 5318 |
. . . . . . 7
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
17 | 13, 14, 16 | sylancr 414 |
. . . . . 6
β’ (π β Mnd β
(Baseβπ) β
V) |
18 | 17 | pwexd 4183 |
. . . . 5
β’ (π β Mnd β π«
(Baseβπ) β
V) |
19 | | rabexg 4148 |
. . . . 5
β’
(π« (Baseβπ) β V β {π‘ β π« (Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)} β V) |
20 | 18, 19 | syl 14 |
. . . 4
β’ (π β Mnd β {π‘ β π«
(Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)} β V) |
21 | 1, 11, 12, 20 | fvmptd3 5611 |
. . 3
β’ (π β Mnd β
(SubMndβπ) = {π‘ β π«
(Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)}) |
22 | 21 | eleq2d 2247 |
. 2
β’ (π β Mnd β (π β (SubMndβπ) β π β {π‘ β π« (Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)})) |
23 | | eleq2 2241 |
. . . . 5
β’ (π‘ = π β ((0gβπ) β π‘ β (0gβπ) β π)) |
24 | | eleq2 2241 |
. . . . . . 7
β’ (π‘ = π β ((π₯(+gβπ)π¦) β π‘ β (π₯(+gβπ)π¦) β π)) |
25 | 24 | raleqbi1dv 2681 |
. . . . . 6
β’ (π‘ = π β (βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘ β βπ¦ β π (π₯(+gβπ)π¦) β π)) |
26 | 25 | raleqbi1dv 2681 |
. . . . 5
β’ (π‘ = π β (βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘ β βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)) |
27 | 23, 26 | anbi12d 473 |
. . . 4
β’ (π‘ = π β (((0gβπ) β π‘ β§ βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘) β ((0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π))) |
28 | 27 | elrab 2895 |
. . 3
β’ (π β {π‘ β π« (Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)} β (π β π« (Baseβπ) β§
((0gβπ)
β π β§
βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π))) |
29 | | issubm.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
30 | 29 | sseq2i 3184 |
. . . . . 6
β’ (π β π΅ β π β (Baseβπ)) |
31 | | issubm.z |
. . . . . . . 8
β’ 0 =
(0gβπ) |
32 | 31 | eleq1i 2243 |
. . . . . . 7
β’ ( 0 β π β
(0gβπ)
β π) |
33 | | issubm.p |
. . . . . . . . . 10
β’ + =
(+gβπ) |
34 | 33 | oveqi 5890 |
. . . . . . . . 9
β’ (π₯ + π¦) = (π₯(+gβπ)π¦) |
35 | 34 | eleq1i 2243 |
. . . . . . . 8
β’ ((π₯ + π¦) β π β (π₯(+gβπ)π¦) β π) |
36 | 35 | 2ralbii 2485 |
. . . . . . 7
β’
(βπ₯ β
π βπ¦ β π (π₯ + π¦) β π β βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π) |
37 | 32, 36 | anbi12i 460 |
. . . . . 6
β’ (( 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π) β ((0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)) |
38 | 30, 37 | anbi12i 460 |
. . . . 5
β’ ((π β π΅ β§ ( 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π)) β (π β (Baseβπ) β§ ((0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π))) |
39 | 38 | a1i 9 |
. . . 4
β’ (π β Mnd β ((π β π΅ β§ ( 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π)) β (π β (Baseβπ) β§ ((0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)))) |
40 | | 3anass 982 |
. . . . 5
β’ ((π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π) β (π β π΅ β§ ( 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π))) |
41 | 40 | a1i 9 |
. . . 4
β’ (π β Mnd β ((π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π) β (π β π΅ β§ ( 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π)))) |
42 | | elpw2g 4158 |
. . . . . 6
β’
((Baseβπ)
β V β (π β
π« (Baseβπ)
β π β
(Baseβπ))) |
43 | 17, 42 | syl 14 |
. . . . 5
β’ (π β Mnd β (π β π«
(Baseβπ) β π β (Baseβπ))) |
44 | 43 | anbi1d 465 |
. . . 4
β’ (π β Mnd β ((π β π«
(Baseβπ) β§
((0gβπ)
β π β§
βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)) β (π β (Baseβπ) β§ ((0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)))) |
45 | 39, 41, 44 | 3bitr4rd 221 |
. . 3
β’ (π β Mnd β ((π β π«
(Baseβπ) β§
((0gβπ)
β π β§
βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)) β (π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π))) |
46 | 28, 45 | bitrid 192 |
. 2
β’ (π β Mnd β (π β {π‘ β π« (Baseβπ) β£
((0gβπ)
β π‘ β§
βπ₯ β π‘ βπ¦ β π‘ (π₯(+gβπ)π¦) β π‘)} β (π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π))) |
47 | 22, 46 | bitrd 188 |
1
β’ (π β Mnd β (π β (SubMndβπ) β (π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π))) |