ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm GIF version

Theorem issubm 13174
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b 𝐵 = (Base‘𝑀)
issubm.z 0 = (0g𝑀)
issubm.p + = (+g𝑀)
Assertion
Ref Expression
issubm (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem issubm
Dummy variables 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 13162 . . . 4 SubMnd = (𝑚 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)})
2 fveq2 5561 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
32pweqd 3611 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
4 fveq2 5561 . . . . . . 7 (𝑚 = 𝑀 → (0g𝑚) = (0g𝑀))
54eleq1d 2265 . . . . . 6 (𝑚 = 𝑀 → ((0g𝑚) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑡))
6 fveq2 5561 . . . . . . . . 9 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
76oveqd 5942 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥(+g𝑀)𝑦))
87eleq1d 2265 . . . . . . 7 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑡))
982ralbidv 2521 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡))
105, 9anbi12d 473 . . . . 5 (𝑚 = 𝑀 → (((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)))
113, 10rabeqbidv 2758 . . . 4 (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
12 id 19 . . . 4 (𝑀 ∈ Mnd → 𝑀 ∈ Mnd)
13 basfn 12761 . . . . . . 7 Base Fn V
14 elex 2774 . . . . . . 7 (𝑀 ∈ Mnd → 𝑀 ∈ V)
15 funfvex 5578 . . . . . . . 8 ((Fun Base ∧ 𝑀 ∈ dom Base) → (Base‘𝑀) ∈ V)
1615funfni 5361 . . . . . . 7 ((Base Fn V ∧ 𝑀 ∈ V) → (Base‘𝑀) ∈ V)
1713, 14, 16sylancr 414 . . . . . 6 (𝑀 ∈ Mnd → (Base‘𝑀) ∈ V)
1817pwexd 4215 . . . . 5 (𝑀 ∈ Mnd → 𝒫 (Base‘𝑀) ∈ V)
19 rabexg 4177 . . . . 5 (𝒫 (Base‘𝑀) ∈ V → {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ∈ V)
2018, 19syl 14 . . . 4 (𝑀 ∈ Mnd → {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ∈ V)
211, 11, 12, 20fvmptd3 5658 . . 3 (𝑀 ∈ Mnd → (SubMnd‘𝑀) = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
2221eleq2d 2266 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)}))
23 eleq2 2260 . . . . 5 (𝑡 = 𝑆 → ((0g𝑀) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑆))
24 eleq2 2260 . . . . . . 7 (𝑡 = 𝑆 → ((𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2524raleqbi1dv 2705 . . . . . 6 (𝑡 = 𝑆 → (∀𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2625raleqbi1dv 2705 . . . . 5 (𝑡 = 𝑆 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2723, 26anbi12d 473 . . . 4 (𝑡 = 𝑆 → (((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
2827elrab 2920 . . 3 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
29 issubm.b . . . . . . 7 𝐵 = (Base‘𝑀)
3029sseq2i 3211 . . . . . 6 (𝑆𝐵𝑆 ⊆ (Base‘𝑀))
31 issubm.z . . . . . . . 8 0 = (0g𝑀)
3231eleq1i 2262 . . . . . . 7 ( 0𝑆 ↔ (0g𝑀) ∈ 𝑆)
33 issubm.p . . . . . . . . . 10 + = (+g𝑀)
3433oveqi 5938 . . . . . . . . 9 (𝑥 + 𝑦) = (𝑥(+g𝑀)𝑦)
3534eleq1i 2262 . . . . . . . 8 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆)
36352ralbii 2505 . . . . . . 7 (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
3732, 36anbi12i 460 . . . . . 6 (( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
3830, 37anbi12i 460 . . . . 5 ((𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
3938a1i 9 . . . 4 (𝑀 ∈ Mnd → ((𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))))
40 3anass 984 . . . . 5 ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
4140a1i 9 . . . 4 (𝑀 ∈ Mnd → ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))))
42 elpw2g 4190 . . . . . 6 ((Base‘𝑀) ∈ V → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
4317, 42syl 14 . . . . 5 (𝑀 ∈ Mnd → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
4443anbi1d 465 . . . 4 (𝑀 ∈ Mnd → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))))
4539, 41, 443bitr4rd 221 . . 3 (𝑀 ∈ Mnd → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
4628, 45bitrid 192 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
4722, 46bitrd 188 1 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3606   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Mndcmnd 13118  SubMndcsubmnd 13160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-submnd 13162
This theorem is referenced by:  issubm2  13175  issubmd  13176  mndissubm  13177  submss  13178  submid  13179  subm0cl  13180  submcl  13181  0subm  13186  insubm  13187  mhmima  13193  mhmeql  13194  issubg3  13398  issubrg3  13879  cnsubmlem  14210
  Copyright terms: Public domain W3C validator