ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm GIF version

Theorem issubm 13047
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b 𝐵 = (Base‘𝑀)
issubm.z 0 = (0g𝑀)
issubm.p + = (+g𝑀)
Assertion
Ref Expression
issubm (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem issubm
Dummy variables 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 13035 . . . 4 SubMnd = (𝑚 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)})
2 fveq2 5555 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
32pweqd 3607 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
4 fveq2 5555 . . . . . . 7 (𝑚 = 𝑀 → (0g𝑚) = (0g𝑀))
54eleq1d 2262 . . . . . 6 (𝑚 = 𝑀 → ((0g𝑚) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑡))
6 fveq2 5555 . . . . . . . . 9 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
76oveqd 5936 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥(+g𝑀)𝑦))
87eleq1d 2262 . . . . . . 7 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑡))
982ralbidv 2518 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡))
105, 9anbi12d 473 . . . . 5 (𝑚 = 𝑀 → (((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)))
113, 10rabeqbidv 2755 . . . 4 (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
12 id 19 . . . 4 (𝑀 ∈ Mnd → 𝑀 ∈ Mnd)
13 basfn 12679 . . . . . . 7 Base Fn V
14 elex 2771 . . . . . . 7 (𝑀 ∈ Mnd → 𝑀 ∈ V)
15 funfvex 5572 . . . . . . . 8 ((Fun Base ∧ 𝑀 ∈ dom Base) → (Base‘𝑀) ∈ V)
1615funfni 5355 . . . . . . 7 ((Base Fn V ∧ 𝑀 ∈ V) → (Base‘𝑀) ∈ V)
1713, 14, 16sylancr 414 . . . . . 6 (𝑀 ∈ Mnd → (Base‘𝑀) ∈ V)
1817pwexd 4211 . . . . 5 (𝑀 ∈ Mnd → 𝒫 (Base‘𝑀) ∈ V)
19 rabexg 4173 . . . . 5 (𝒫 (Base‘𝑀) ∈ V → {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ∈ V)
2018, 19syl 14 . . . 4 (𝑀 ∈ Mnd → {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ∈ V)
211, 11, 12, 20fvmptd3 5652 . . 3 (𝑀 ∈ Mnd → (SubMnd‘𝑀) = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
2221eleq2d 2263 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)}))
23 eleq2 2257 . . . . 5 (𝑡 = 𝑆 → ((0g𝑀) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑆))
24 eleq2 2257 . . . . . . 7 (𝑡 = 𝑆 → ((𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2524raleqbi1dv 2702 . . . . . 6 (𝑡 = 𝑆 → (∀𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2625raleqbi1dv 2702 . . . . 5 (𝑡 = 𝑆 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2723, 26anbi12d 473 . . . 4 (𝑡 = 𝑆 → (((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
2827elrab 2917 . . 3 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
29 issubm.b . . . . . . 7 𝐵 = (Base‘𝑀)
3029sseq2i 3207 . . . . . 6 (𝑆𝐵𝑆 ⊆ (Base‘𝑀))
31 issubm.z . . . . . . . 8 0 = (0g𝑀)
3231eleq1i 2259 . . . . . . 7 ( 0𝑆 ↔ (0g𝑀) ∈ 𝑆)
33 issubm.p . . . . . . . . . 10 + = (+g𝑀)
3433oveqi 5932 . . . . . . . . 9 (𝑥 + 𝑦) = (𝑥(+g𝑀)𝑦)
3534eleq1i 2259 . . . . . . . 8 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆)
36352ralbii 2502 . . . . . . 7 (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
3732, 36anbi12i 460 . . . . . 6 (( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
3830, 37anbi12i 460 . . . . 5 ((𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
3938a1i 9 . . . 4 (𝑀 ∈ Mnd → ((𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))))
40 3anass 984 . . . . 5 ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
4140a1i 9 . . . 4 (𝑀 ∈ Mnd → ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))))
42 elpw2g 4186 . . . . . 6 ((Base‘𝑀) ∈ V → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
4317, 42syl 14 . . . . 5 (𝑀 ∈ Mnd → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
4443anbi1d 465 . . . 4 (𝑀 ∈ Mnd → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))))
4539, 41, 443bitr4rd 221 . . 3 (𝑀 ∈ Mnd → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
4628, 45bitrid 192 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
4722, 46bitrd 188 1 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  wss 3154  𝒫 cpw 3602   Fn wfn 5250  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Mndcmnd 13000  SubMndcsubmnd 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-submnd 13035
This theorem is referenced by:  issubm2  13048  issubmd  13049  mndissubm  13050  submss  13051  submid  13052  subm0cl  13053  submcl  13054  0subm  13059  insubm  13060  mhmima  13066  mhmeql  13067  issubg3  13265  issubrg3  13746  cnsubmlem  14077
  Copyright terms: Public domain W3C validator