Step | Hyp | Ref
| Expression |
1 | | df-submnd 12684 |
. . . 4
⊢ SubMnd =
(𝑚 ∈ Mnd ↦
{𝑡 ∈ 𝒫
(Base‘𝑚) ∣
((0g‘𝑚)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡)}) |
2 | | fveq2 5496 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
3 | 2 | pweqd 3571 |
. . . . 5
⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀)) |
4 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (0g‘𝑚) = (0g‘𝑀)) |
5 | 4 | eleq1d 2239 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((0g‘𝑚) ∈ 𝑡 ↔ (0g‘𝑀) ∈ 𝑡)) |
6 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) |
7 | 6 | oveqd 5870 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (𝑥(+g‘𝑚)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
8 | 7 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → ((𝑥(+g‘𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)) |
9 | 8 | 2ralbidv 2494 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)) |
10 | 5, 9 | anbi12d 470 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((0g‘𝑚) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡) ↔ ((0g‘𝑀) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡))) |
11 | 3, 10 | rabeqbidv 2725 |
. . . 4
⊢ (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣
((0g‘𝑚)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡)} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)}) |
12 | | id 19 |
. . . 4
⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mnd) |
13 | | basfn 12473 |
. . . . . . 7
⊢ Base Fn
V |
14 | | elex 2741 |
. . . . . . 7
⊢ (𝑀 ∈ Mnd → 𝑀 ∈ V) |
15 | | funfvex 5513 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑀 ∈ dom
Base) → (Base‘𝑀)
∈ V) |
16 | 15 | funfni 5298 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑀 ∈ V) →
(Base‘𝑀) ∈
V) |
17 | 13, 14, 16 | sylancr 412 |
. . . . . 6
⊢ (𝑀 ∈ Mnd →
(Base‘𝑀) ∈
V) |
18 | 17 | pwexd 4167 |
. . . . 5
⊢ (𝑀 ∈ Mnd → 𝒫
(Base‘𝑀) ∈
V) |
19 | | rabexg 4132 |
. . . . 5
⊢
(𝒫 (Base‘𝑀) ∈ V → {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)} ∈ V) |
20 | 18, 19 | syl 14 |
. . . 4
⊢ (𝑀 ∈ Mnd → {𝑡 ∈ 𝒫
(Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)} ∈ V) |
21 | 1, 11, 12, 20 | fvmptd3 5589 |
. . 3
⊢ (𝑀 ∈ Mnd →
(SubMnd‘𝑀) = {𝑡 ∈ 𝒫
(Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)}) |
22 | 21 | eleq2d 2240 |
. 2
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)})) |
23 | | eleq2 2234 |
. . . . 5
⊢ (𝑡 = 𝑆 → ((0g‘𝑀) ∈ 𝑡 ↔ (0g‘𝑀) ∈ 𝑆)) |
24 | | eleq2 2234 |
. . . . . . 7
⊢ (𝑡 = 𝑆 → ((𝑥(+g‘𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
25 | 24 | raleqbi1dv 2673 |
. . . . . 6
⊢ (𝑡 = 𝑆 → (∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
26 | 25 | raleqbi1dv 2673 |
. . . . 5
⊢ (𝑡 = 𝑆 → (∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
27 | 23, 26 | anbi12d 470 |
. . . 4
⊢ (𝑡 = 𝑆 → (((0g‘𝑀) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡) ↔ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
28 | 27 | elrab 2886 |
. . 3
⊢ (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧
((0g‘𝑀)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
29 | | issubm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
30 | 29 | sseq2i 3174 |
. . . . . 6
⊢ (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (Base‘𝑀)) |
31 | | issubm.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝑀) |
32 | 31 | eleq1i 2236 |
. . . . . . 7
⊢ ( 0 ∈ 𝑆 ↔
(0g‘𝑀)
∈ 𝑆) |
33 | | issubm.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑀) |
34 | 33 | oveqi 5866 |
. . . . . . . . 9
⊢ (𝑥 + 𝑦) = (𝑥(+g‘𝑀)𝑦) |
35 | 34 | eleq1i 2236 |
. . . . . . . 8
⊢ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
36 | 35 | 2ralbii 2478 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
37 | 32, 36 | anbi12i 457 |
. . . . . 6
⊢ (( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
38 | 30, 37 | anbi12i 457 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
39 | 38 | a1i 9 |
. . . 4
⊢ (𝑀 ∈ Mnd → ((𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)))) |
40 | | 3anass 977 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
41 | 40 | a1i 9 |
. . . 4
⊢ (𝑀 ∈ Mnd → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)))) |
42 | | elpw2g 4142 |
. . . . . 6
⊢
((Base‘𝑀)
∈ V → (𝑆 ∈
𝒫 (Base‘𝑀)
↔ 𝑆 ⊆
(Base‘𝑀))) |
43 | 17, 42 | syl 14 |
. . . . 5
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ 𝒫
(Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
44 | 43 | anbi1d 462 |
. . . 4
⊢ (𝑀 ∈ Mnd → ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧
((0g‘𝑀)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)))) |
45 | 39, 41, 44 | 3bitr4rd 220 |
. . 3
⊢ (𝑀 ∈ Mnd → ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧
((0g‘𝑀)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
46 | 28, 45 | syl5bb 191 |
. 2
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
47 | 22, 46 | bitrd 187 |
1
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |