ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsom GIF version

Theorem cnvsom 5213
Description: The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
cnvsom (∃𝑥 𝑥𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem cnvsom
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvpom 5212 . . 3 (∃𝑥 𝑥𝐴 → (𝑅 Po 𝐴𝑅 Po 𝐴))
2 vex 2766 . . . . . . . . 9 𝑦 ∈ V
3 vex 2766 . . . . . . . . 9 𝑥 ∈ V
42, 3brcnv 4849 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
5 vex 2766 . . . . . . . . . . 11 𝑧 ∈ V
62, 5brcnv 4849 . . . . . . . . . 10 (𝑦𝑅𝑧𝑧𝑅𝑦)
75, 3brcnv 4849 . . . . . . . . . 10 (𝑧𝑅𝑥𝑥𝑅𝑧)
86, 7orbi12i 765 . . . . . . . . 9 ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦𝑥𝑅𝑧))
9 orcom 729 . . . . . . . . 9 ((𝑧𝑅𝑦𝑥𝑅𝑧) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦))
108, 9bitri 184 . . . . . . . 8 ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦))
114, 10imbi12i 239 . . . . . . 7 ((𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
1211ralbii 2503 . . . . . 6 (∀𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ ∀𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
13122ralbii 2505 . . . . 5 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
14 ralcom 2660 . . . . 5 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)))
1513, 14bitr3i 186 . . . 4 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)))
1615a1i 9 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥))))
171, 16anbi12d 473 . 2 (∃𝑥 𝑥𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥)))))
18 df-iso 4332 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
19 df-iso 4332 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑦𝐴𝑥𝐴𝑧𝐴 (𝑦𝑅𝑥 → (𝑦𝑅𝑧𝑧𝑅𝑥))))
2017, 18, 193bitr4g 223 1 (∃𝑥 𝑥𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wex 1506  wcel 2167  wral 2475   class class class wbr 4033   Po wpo 4329   Or wor 4330  ccnv 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-po 4331  df-iso 4332  df-cnv 4671
This theorem is referenced by:  gtso  8105
  Copyright terms: Public domain W3C validator