Step | Hyp | Ref
| Expression |
1 | | cnvpom 5146 |
. . 3
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴)) |
2 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
3 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
4 | 2, 3 | brcnv 4787 |
. . . . . . . 8
⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
5 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
6 | 2, 5 | brcnv 4787 |
. . . . . . . . . 10
⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
7 | 5, 3 | brcnv 4787 |
. . . . . . . . . 10
⊢ (𝑧◡𝑅𝑥 ↔ 𝑥𝑅𝑧) |
8 | 6, 7 | orbi12i 754 |
. . . . . . . . 9
⊢ ((𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥) ↔ (𝑧𝑅𝑦 ∨ 𝑥𝑅𝑧)) |
9 | | orcom 718 |
. . . . . . . . 9
⊢ ((𝑧𝑅𝑦 ∨ 𝑥𝑅𝑧) ↔ (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
10 | 8, 9 | bitri 183 |
. . . . . . . 8
⊢ ((𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥) ↔ (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
11 | 4, 10 | imbi12i 238 |
. . . . . . 7
⊢ ((𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥)) ↔ (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
12 | 11 | ralbii 2472 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥)) ↔ ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
13 | 12 | 2ralbii 2474 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
14 | | ralcom 2629 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥)) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥))) |
15 | 13, 14 | bitr3i 185 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥))) |
16 | 15 | a1i 9 |
. . 3
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥)))) |
17 | 1, 16 | anbi12d 465 |
. 2
⊢
(∃𝑥 𝑥 ∈ 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥))))) |
18 | | df-iso 4275 |
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
19 | | df-iso 4275 |
. 2
⊢ (◡𝑅 Or 𝐴 ↔ (◡𝑅 Po 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦◡𝑅𝑥 → (𝑦◡𝑅𝑧 ∨ 𝑧◡𝑅𝑥)))) |
20 | 17, 18, 19 | 3bitr4g 222 |
1
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴)) |