| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmo4f | GIF version | ||
| Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| Ref | Expression |
|---|---|
| rmo4f.1 | ⊢ Ⅎ𝑥𝐴 |
| rmo4f.2 | ⊢ Ⅎ𝑦𝐴 |
| rmo4f.3 | ⊢ Ⅎ𝑥𝜓 |
| rmo4f.4 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rmo4f | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | rmo4f.2 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 1, 2, 3 | rmo3f 2961 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 5 | rmo4f.3 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 6 | rmo4f.4 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | sbie 1805 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 8 | 7 | anbi2i 457 | . . . 4 ⊢ ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ 𝜓)) |
| 9 | 8 | imbi1i 238 | . . 3 ⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 10 | 9 | 2ralbii 2505 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 11 | 4, 10 | bitri 184 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1474 [wsb 1776 Ⅎwnfc 2326 ∀wral 2475 ∃*wrmo 2478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rmo 2483 |
| This theorem is referenced by: disjxp1 6294 |
| Copyright terms: Public domain | W3C validator |