ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo4f GIF version

Theorem rmo4f 2928
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
rmo4f.1 𝑥𝐴
rmo4f.2 𝑦𝐴
rmo4f.3 𝑥𝜓
rmo4f.4 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rmo4f (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem rmo4f
StepHypRef Expression
1 rmo4f.1 . . 3 𝑥𝐴
2 rmo4f.2 . . 3 𝑦𝐴
3 nfv 1521 . . 3 𝑦𝜑
41, 2, 3rmo3f 2927 . 2 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
5 rmo4f.3 . . . . . 6 𝑥𝜓
6 rmo4f.4 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
75, 6sbie 1784 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
87anbi2i 454 . . . 4 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑𝜓))
98imbi1i 237 . . 3 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑𝜓) → 𝑥 = 𝑦))
1092ralbii 2478 . 2 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
114, 10bitri 183 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wnf 1453  [wsb 1755  wnfc 2299  wral 2448  ∃*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rmo 2456
This theorem is referenced by:  disjxp1  6215
  Copyright terms: Public domain W3C validator