![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impb | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 360 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1156 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 943 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 945 |
This theorem is referenced by: 3adant1l 1189 3adant1r 1190 3impdi 1252 vtocl3gf 2718 rspc2ev 2772 reuss 3321 trssord 4260 funtp 5132 resdif 5343 funimass4 5424 fnovex 5756 fnotovb 5766 fovrn 5865 fnovrn 5870 fmpoco 6064 nndi 6333 nnaordi 6355 ecovass 6489 ecoviass 6490 ecovdi 6491 ecovidi 6492 eqsupti 6832 addasspig 7079 mulasspig 7081 distrpig 7082 distrnq0 7208 addassnq0 7211 distnq0r 7212 prcdnql 7233 prcunqu 7234 genpassl 7273 genpassu 7274 genpassg 7275 distrlem1prl 7331 distrlem1pru 7332 ltexprlemopl 7350 ltexprlemopu 7352 le2tri3i 7788 cnegexlem1 7853 subadd 7881 addsub 7889 subdi 8059 submul2 8073 div12ap 8360 diveqap1 8371 divnegap 8372 divdivap2 8390 ltmulgt11 8525 gt0div 8531 ge0div 8532 uzind3 9061 fnn0ind 9064 qdivcl 9330 irrmul 9334 xrlttr 9467 fzen 9709 lenegsq 10752 moddvds 11343 dvds2add 11368 dvds2sub 11369 dvdsleabs 11384 divalgb 11463 ndvdsadd 11469 modgcd 11520 absmulgcd 11544 setsresg 11833 unopn 12008 innei 12168 cncfi 12544 |
Copyright terms: Public domain | W3C validator |