| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 365 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant1l 1232 3adant1r 1233 3impdi 1305 vtocl3gf 2835 rspc2ev 2891 reuss 3453 trssord 4425 funtp 5321 resdif 5538 funimass4 5623 fnovex 5967 fnotovb 5978 fovcdm 6079 fnovrn 6084 fmpoco 6292 nndi 6562 nnaordi 6584 ecovass 6721 ecoviass 6722 ecovdi 6723 ecovidi 6724 eqsupti 7080 addasspig 7425 mulasspig 7427 distrpig 7428 distrnq0 7554 addassnq0 7557 distnq0r 7558 prcdnql 7579 prcunqu 7580 genpassl 7619 genpassu 7620 genpassg 7621 distrlem1prl 7677 distrlem1pru 7678 ltexprlemopl 7696 ltexprlemopu 7698 le2tri3i 8163 cnegexlem1 8229 subadd 8257 addsub 8265 subdi 8439 submul2 8453 div12ap 8749 diveqap1 8760 divnegap 8761 divdivap2 8779 ltmulgt11 8919 gt0div 8925 ge0div 8926 uzind3 9468 fnn0ind 9471 qdivcl 9746 irrmul 9750 xrlttr 9899 fzen 10147 ccatval21sw 11036 lswccatn0lsw 11042 lenegsq 11325 moddvds 12029 dvds2add 12055 dvds2sub 12056 dvdsleabs 12075 divalgb 12155 ndvdsadd 12161 modgcd 12231 absmulgcd 12257 odzval 12483 pcmul 12543 setsresg 12789 prdssgrpd 13165 issubmnd 13192 prdsmndd 13198 submcl 13229 grpinvid1 13302 grpinvid2 13303 mulgp1 13409 ghmlin 13502 ghmsub 13505 cmncom 13556 islss3 14059 unopn 14395 innei 14553 cncfi 14968 |
| Copyright terms: Public domain | W3C validator |