| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 365 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1217 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant1l 1254 3adant1r 1255 3impdi 1327 vtocl3gf 2864 rspc2ev 2922 reuss 3485 trssord 4470 funtp 5373 resdif 5593 funimass4 5683 fnovex 6033 fnotovb 6046 fovcdm 6147 fnovrn 6152 fmpoco 6360 nndi 6630 nnaordi 6652 ecovass 6789 ecoviass 6790 ecovdi 6791 ecovidi 6792 eqsupti 7159 addasspig 7513 mulasspig 7515 distrpig 7516 distrnq0 7642 addassnq0 7645 distnq0r 7646 prcdnql 7667 prcunqu 7668 genpassl 7707 genpassu 7708 genpassg 7709 distrlem1prl 7765 distrlem1pru 7766 ltexprlemopl 7784 ltexprlemopu 7786 le2tri3i 8251 cnegexlem1 8317 subadd 8345 addsub 8353 subdi 8527 submul2 8541 div12ap 8837 diveqap1 8848 divnegap 8849 divdivap2 8867 ltmulgt11 9007 gt0div 9013 ge0div 9014 uzind3 9556 fnn0ind 9559 qdivcl 9834 irrmul 9838 xrlttr 9987 fzen 10235 ccatval21sw 11135 lswccatn0lsw 11141 swrdwrdsymbg 11191 ccatpfx 11228 ccatopth 11243 lenegsq 11601 moddvds 12305 dvds2add 12331 dvds2sub 12332 dvdsleabs 12351 divalgb 12431 ndvdsadd 12437 modgcd 12507 absmulgcd 12533 odzval 12759 pcmul 12819 setsresg 13065 prdssgrpd 13443 issubmnd 13470 prdsmndd 13476 submcl 13507 grpinvid1 13580 grpinvid2 13581 mulgp1 13687 ghmlin 13780 ghmsub 13783 cmncom 13834 islss3 14337 unopn 14673 innei 14831 cncfi 15246 |
| Copyright terms: Public domain | W3C validator |