![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impb | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 365 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3adant1l 1232 3adant1r 1233 3impdi 1304 vtocl3gf 2823 rspc2ev 2879 reuss 3440 trssord 4411 funtp 5307 resdif 5522 funimass4 5607 fnovex 5951 fnotovb 5961 fovcdm 6061 fnovrn 6066 fmpoco 6269 nndi 6539 nnaordi 6561 ecovass 6698 ecoviass 6699 ecovdi 6700 ecovidi 6701 eqsupti 7055 addasspig 7390 mulasspig 7392 distrpig 7393 distrnq0 7519 addassnq0 7522 distnq0r 7523 prcdnql 7544 prcunqu 7545 genpassl 7584 genpassu 7585 genpassg 7586 distrlem1prl 7642 distrlem1pru 7643 ltexprlemopl 7661 ltexprlemopu 7663 le2tri3i 8128 cnegexlem1 8194 subadd 8222 addsub 8230 subdi 8404 submul2 8418 div12ap 8713 diveqap1 8724 divnegap 8725 divdivap2 8743 ltmulgt11 8883 gt0div 8889 ge0div 8890 uzind3 9430 fnn0ind 9433 qdivcl 9708 irrmul 9712 xrlttr 9861 fzen 10109 lenegsq 11239 moddvds 11942 dvds2add 11968 dvds2sub 11969 dvdsleabs 11987 divalgb 12066 ndvdsadd 12072 modgcd 12128 absmulgcd 12154 odzval 12379 pcmul 12439 setsresg 12656 issubmnd 13023 submcl 13051 grpinvid1 13124 grpinvid2 13125 mulgp1 13225 ghmlin 13318 ghmsub 13321 cmncom 13372 islss3 13875 unopn 14173 innei 14331 cncfi 14733 |
Copyright terms: Public domain | W3C validator |