Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impb | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 363 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1188 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: 3adant1l 1225 3adant1r 1226 3impdi 1288 vtocl3gf 2793 rspc2ev 2849 reuss 3408 trssord 4363 funtp 5249 resdif 5462 funimass4 5545 fnovex 5884 fnotovb 5894 fovrn 5993 fnovrn 5998 fmpoco 6193 nndi 6463 nnaordi 6485 ecovass 6620 ecoviass 6621 ecovdi 6622 ecovidi 6623 eqsupti 6971 addasspig 7285 mulasspig 7287 distrpig 7288 distrnq0 7414 addassnq0 7417 distnq0r 7418 prcdnql 7439 prcunqu 7440 genpassl 7479 genpassu 7480 genpassg 7481 distrlem1prl 7537 distrlem1pru 7538 ltexprlemopl 7556 ltexprlemopu 7558 le2tri3i 8021 cnegexlem1 8087 subadd 8115 addsub 8123 subdi 8297 submul2 8311 div12ap 8604 diveqap1 8615 divnegap 8616 divdivap2 8634 ltmulgt11 8773 gt0div 8779 ge0div 8780 uzind3 9318 fnn0ind 9321 qdivcl 9595 irrmul 9599 xrlttr 9745 fzen 9992 lenegsq 11052 moddvds 11754 dvds2add 11780 dvds2sub 11781 dvdsleabs 11798 divalgb 11877 ndvdsadd 11883 modgcd 11939 absmulgcd 11965 odzval 12188 pcmul 12248 setsresg 12447 submcl 12694 unopn 12762 innei 12922 cncfi 13324 |
Copyright terms: Public domain | W3C validator |