![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impb | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 365 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: 3adant1l 1232 3adant1r 1233 3impdi 1304 vtocl3gf 2824 rspc2ev 2880 reuss 3441 trssord 4412 funtp 5308 resdif 5523 funimass4 5608 fnovex 5952 fnotovb 5962 fovcdm 6063 fnovrn 6068 fmpoco 6271 nndi 6541 nnaordi 6563 ecovass 6700 ecoviass 6701 ecovdi 6702 ecovidi 6703 eqsupti 7057 addasspig 7392 mulasspig 7394 distrpig 7395 distrnq0 7521 addassnq0 7524 distnq0r 7525 prcdnql 7546 prcunqu 7547 genpassl 7586 genpassu 7587 genpassg 7588 distrlem1prl 7644 distrlem1pru 7645 ltexprlemopl 7663 ltexprlemopu 7665 le2tri3i 8130 cnegexlem1 8196 subadd 8224 addsub 8232 subdi 8406 submul2 8420 div12ap 8715 diveqap1 8726 divnegap 8727 divdivap2 8745 ltmulgt11 8885 gt0div 8891 ge0div 8892 uzind3 9433 fnn0ind 9436 qdivcl 9711 irrmul 9715 xrlttr 9864 fzen 10112 lenegsq 11242 moddvds 11945 dvds2add 11971 dvds2sub 11972 dvdsleabs 11990 divalgb 12069 ndvdsadd 12075 modgcd 12131 absmulgcd 12157 odzval 12382 pcmul 12442 setsresg 12659 issubmnd 13026 submcl 13054 grpinvid1 13127 grpinvid2 13128 mulgp1 13228 ghmlin 13321 ghmsub 13324 cmncom 13375 islss3 13878 unopn 14184 innei 14342 cncfi 14757 |
Copyright terms: Public domain | W3C validator |