| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 365 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant1l 1233 3adant1r 1234 3impdi 1306 vtocl3gf 2838 rspc2ev 2896 reuss 3458 trssord 4435 funtp 5336 resdif 5556 funimass4 5642 fnovex 5990 fnotovb 6001 fovcdm 6102 fnovrn 6107 fmpoco 6315 nndi 6585 nnaordi 6607 ecovass 6744 ecoviass 6745 ecovdi 6746 ecovidi 6747 eqsupti 7113 addasspig 7463 mulasspig 7465 distrpig 7466 distrnq0 7592 addassnq0 7595 distnq0r 7596 prcdnql 7617 prcunqu 7618 genpassl 7657 genpassu 7658 genpassg 7659 distrlem1prl 7715 distrlem1pru 7716 ltexprlemopl 7734 ltexprlemopu 7736 le2tri3i 8201 cnegexlem1 8267 subadd 8295 addsub 8303 subdi 8477 submul2 8491 div12ap 8787 diveqap1 8798 divnegap 8799 divdivap2 8817 ltmulgt11 8957 gt0div 8963 ge0div 8964 uzind3 9506 fnn0ind 9509 qdivcl 9784 irrmul 9788 xrlttr 9937 fzen 10185 ccatval21sw 11084 lswccatn0lsw 11090 swrdwrdsymbg 11140 ccatpfx 11177 ccatopth 11192 lenegsq 11481 moddvds 12185 dvds2add 12211 dvds2sub 12212 dvdsleabs 12231 divalgb 12311 ndvdsadd 12317 modgcd 12387 absmulgcd 12413 odzval 12639 pcmul 12699 setsresg 12945 prdssgrpd 13322 issubmnd 13349 prdsmndd 13355 submcl 13386 grpinvid1 13459 grpinvid2 13460 mulgp1 13566 ghmlin 13659 ghmsub 13662 cmncom 13713 islss3 14216 unopn 14552 innei 14710 cncfi 15125 |
| Copyright terms: Public domain | W3C validator |