Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impb | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
2 | 1 | exp32 363 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1183 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3adant1l 1220 3adant1r 1221 3impdi 1283 vtocl3gf 2789 rspc2ev 2845 reuss 3403 trssord 4358 funtp 5241 resdif 5454 funimass4 5537 fnovex 5875 fnotovb 5885 fovrn 5984 fnovrn 5989 fmpoco 6184 nndi 6454 nnaordi 6476 ecovass 6610 ecoviass 6611 ecovdi 6612 ecovidi 6613 eqsupti 6961 addasspig 7271 mulasspig 7273 distrpig 7274 distrnq0 7400 addassnq0 7403 distnq0r 7404 prcdnql 7425 prcunqu 7426 genpassl 7465 genpassu 7466 genpassg 7467 distrlem1prl 7523 distrlem1pru 7524 ltexprlemopl 7542 ltexprlemopu 7544 le2tri3i 8007 cnegexlem1 8073 subadd 8101 addsub 8109 subdi 8283 submul2 8297 div12ap 8590 diveqap1 8601 divnegap 8602 divdivap2 8620 ltmulgt11 8759 gt0div 8765 ge0div 8766 uzind3 9304 fnn0ind 9307 qdivcl 9581 irrmul 9585 xrlttr 9731 fzen 9978 lenegsq 11037 moddvds 11739 dvds2add 11765 dvds2sub 11766 dvdsleabs 11783 divalgb 11862 ndvdsadd 11868 modgcd 11924 absmulgcd 11950 odzval 12173 pcmul 12233 setsresg 12432 unopn 12643 innei 12803 cncfi 13205 |
Copyright terms: Public domain | W3C validator |