| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 365 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant1l 1232 3adant1r 1233 3impdi 1304 vtocl3gf 2827 rspc2ev 2883 reuss 3445 trssord 4416 funtp 5312 resdif 5529 funimass4 5614 fnovex 5958 fnotovb 5969 fovcdm 6070 fnovrn 6075 fmpoco 6283 nndi 6553 nnaordi 6575 ecovass 6712 ecoviass 6713 ecovdi 6714 ecovidi 6715 eqsupti 7071 addasspig 7416 mulasspig 7418 distrpig 7419 distrnq0 7545 addassnq0 7548 distnq0r 7549 prcdnql 7570 prcunqu 7571 genpassl 7610 genpassu 7611 genpassg 7612 distrlem1prl 7668 distrlem1pru 7669 ltexprlemopl 7687 ltexprlemopu 7689 le2tri3i 8154 cnegexlem1 8220 subadd 8248 addsub 8256 subdi 8430 submul2 8444 div12ap 8740 diveqap1 8751 divnegap 8752 divdivap2 8770 ltmulgt11 8910 gt0div 8916 ge0div 8917 uzind3 9458 fnn0ind 9461 qdivcl 9736 irrmul 9740 xrlttr 9889 fzen 10137 lenegsq 11279 moddvds 11983 dvds2add 12009 dvds2sub 12010 dvdsleabs 12029 divalgb 12109 ndvdsadd 12115 modgcd 12185 absmulgcd 12211 odzval 12437 pcmul 12497 setsresg 12743 prdssgrpd 13119 issubmnd 13146 prdsmndd 13152 submcl 13183 grpinvid1 13256 grpinvid2 13257 mulgp1 13363 ghmlin 13456 ghmsub 13459 cmncom 13510 islss3 14013 unopn 14349 innei 14507 cncfi 14922 |
| Copyright terms: Public domain | W3C validator |