| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | GIF version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 365 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant1l 1232 3adant1r 1233 3impdi 1304 vtocl3gf 2827 rspc2ev 2883 reuss 3445 trssord 4416 funtp 5312 resdif 5527 funimass4 5612 fnovex 5956 fnotovb 5967 fovcdm 6068 fnovrn 6073 fmpoco 6276 nndi 6546 nnaordi 6568 ecovass 6705 ecoviass 6706 ecovdi 6707 ecovidi 6708 eqsupti 7064 addasspig 7400 mulasspig 7402 distrpig 7403 distrnq0 7529 addassnq0 7532 distnq0r 7533 prcdnql 7554 prcunqu 7555 genpassl 7594 genpassu 7595 genpassg 7596 distrlem1prl 7652 distrlem1pru 7653 ltexprlemopl 7671 ltexprlemopu 7673 le2tri3i 8138 cnegexlem1 8204 subadd 8232 addsub 8240 subdi 8414 submul2 8428 div12ap 8724 diveqap1 8735 divnegap 8736 divdivap2 8754 ltmulgt11 8894 gt0div 8900 ge0div 8901 uzind3 9442 fnn0ind 9445 qdivcl 9720 irrmul 9724 xrlttr 9873 fzen 10121 lenegsq 11263 moddvds 11967 dvds2add 11993 dvds2sub 11994 dvdsleabs 12013 divalgb 12093 ndvdsadd 12099 modgcd 12169 absmulgcd 12195 odzval 12421 pcmul 12481 setsresg 12727 issubmnd 13109 submcl 13137 grpinvid1 13210 grpinvid2 13211 mulgp1 13311 ghmlin 13404 ghmsub 13407 cmncom 13458 islss3 13961 unopn 14267 innei 14425 cncfi 14840 |
| Copyright terms: Public domain | W3C validator |