Step | Hyp | Ref
| Expression |
1 | | simplr 528 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐻 ∈ Mnd) |
2 | | simprl 529 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
3 | | issubmnd.h |
. . . . . . . . 9
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
4 | 3 | a1i 9 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → 𝐻 = (𝐺 ↾s 𝑆)) |
5 | | issubmnd.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
6 | 5 | a1i 9 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → 𝐵 = (Base‘𝐺)) |
7 | | simp1 997 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → 𝐺 ∈ Mnd) |
8 | | simp2 998 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
9 | 4, 6, 7, 8 | ressbas2d 12522 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
10 | 9 | ad2antrr 488 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 = (Base‘𝐻)) |
11 | 2, 10 | eleqtrd 2256 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (Base‘𝐻)) |
12 | | simprr 531 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
13 | 12, 10 | eleqtrd 2256 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ (Base‘𝐻)) |
14 | | eqid 2177 |
. . . . . 6
⊢
(Base‘𝐻) =
(Base‘𝐻) |
15 | | eqid 2177 |
. . . . . 6
⊢
(+g‘𝐻) = (+g‘𝐻) |
16 | 14, 15 | mndcl 12778 |
. . . . 5
⊢ ((𝐻 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐻)𝑦) ∈ (Base‘𝐻)) |
17 | 1, 11, 13, 16 | syl3anc 1238 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐻)𝑦) ∈ (Base‘𝐻)) |
18 | | issubmnd.p |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
19 | 18 | a1i 9 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → + =
(+g‘𝐺)) |
20 | | basfn 12514 |
. . . . . . . . . . 11
⊢ Base Fn
V |
21 | | elex 2748 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ V) |
22 | | funfvex 5532 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝐺 ∈ dom
Base) → (Base‘𝐺)
∈ V) |
23 | 22 | funfni 5316 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝐺 ∈ V) →
(Base‘𝐺) ∈
V) |
24 | 20, 21, 23 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Mnd →
(Base‘𝐺) ∈
V) |
25 | 5, 24 | eqeltrid 2264 |
. . . . . . . . 9
⊢ (𝐺 ∈ Mnd → 𝐵 ∈ V) |
26 | 7, 25 | syl 14 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → 𝐵 ∈ V) |
27 | 26, 8 | ssexd 4143 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → 𝑆 ∈ V) |
28 | 4, 19, 27, 7 | ressplusgd 12581 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → + =
(+g‘𝐻)) |
29 | 28 | ad2antrr 488 |
. . . . 5
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → + =
(+g‘𝐻)) |
30 | 29 | oveqd 5891 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥(+g‘𝐻)𝑦)) |
31 | 17, 30, 10 | 3eltr4d 2261 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
32 | 31 | ralrimivva 2559 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
33 | 9 | adantr 276 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
34 | 28 | adantr 276 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → + =
(+g‘𝐻)) |
35 | | ovrspc2v 5900 |
. . . . . 6
⊢ (((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆) |
36 | 35 | ancoms 268 |
. . . . 5
⊢
((∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (𝑢 + 𝑣) ∈ 𝑆) |
37 | 36 | 3impb 1199 |
. . . 4
⊢
((∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆) |
38 | 37 | 3adant1l 1230 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆) |
39 | | simpl1 1000 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐺 ∈ Mnd) |
40 | | simpl2 1001 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
41 | 40 | sseld 3154 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢 ∈ 𝑆 → 𝑢 ∈ 𝐵)) |
42 | 40 | sseld 3154 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑣 ∈ 𝑆 → 𝑣 ∈ 𝐵)) |
43 | 40 | sseld 3154 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑤 ∈ 𝑆 → 𝑤 ∈ 𝐵)) |
44 | 41, 42, 43 | 3anim123d 1319 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
45 | 44 | imp 124 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) |
46 | 5, 18 | mndass 12779 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
47 | 39, 45, 46 | syl2an2r 595 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
48 | | simpl3 1002 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 0 ∈ 𝑆) |
49 | 40 | sselda 3155 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢 ∈ 𝑆) → 𝑢 ∈ 𝐵) |
50 | | issubmnd.z |
. . . . 5
⊢ 0 =
(0g‘𝐺) |
51 | 5, 18, 50 | mndlid 12790 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑢 ∈ 𝐵) → ( 0 + 𝑢) = 𝑢) |
52 | 39, 49, 51 | syl2an2r 595 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢 ∈ 𝑆) → ( 0 + 𝑢) = 𝑢) |
53 | 5, 18, 50 | mndrid 12791 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑢 ∈ 𝐵) → (𝑢 + 0 ) = 𝑢) |
54 | 39, 49, 53 | syl2an2r 595 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢 ∈ 𝑆) → (𝑢 + 0 ) = 𝑢) |
55 | 33, 34, 38, 47, 48, 52, 54 | ismndd 12792 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mnd) |
56 | 32, 55 | impbida 596 |
1
⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) |