ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprringbg GIF version

Theorem opprringbg 13712
Description: Bidirectional form of opprring 13711. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprringbg (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))

Proof of Theorem opprringbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprring 13711 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
3 eqid 2196 . . . . . 6 (oppr𝑂) = (oppr𝑂)
43opprring 13711 . . . . 5 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
54adantl 277 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (oppr𝑂) ∈ Ring)
6 eqidd 2197 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅))
7 eqid 2196 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
81, 7opprbasg 13707 . . . . . 6 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
9 eqid 2196 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 13707 . . . . . 6 (𝑂 ∈ Ring → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10sylan9eq 2249 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘(oppr𝑂)))
12 eqid 2196 . . . . . . . 8 (+g𝑅) = (+g𝑅)
131, 12oppraddg 13708 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
14 eqid 2196 . . . . . . . 8 (+g𝑂) = (+g𝑂)
153, 14oppraddg 13708 . . . . . . 7 (𝑂 ∈ Ring → (+g𝑂) = (+g‘(oppr𝑂)))
1613, 15sylan9eq 2249 . . . . . 6 ((𝑅𝑉𝑂 ∈ Ring) → (+g𝑅) = (+g‘(oppr𝑂)))
1716oveqdr 5953 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
18 eqid 2196 . . . . . . . . 9 (.r𝑂) = (.r𝑂)
19 eqid 2196 . . . . . . . . 9 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
209, 18, 3, 19opprmulg 13703 . . . . . . . 8 ((𝑂 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
21203adant1l 1232 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
22 simp1l 1023 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
23 simp3 1001 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
24 simp2 1000 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
25 eqid 2196 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
267, 25, 1, 18opprmulg 13703 . . . . . . . 8 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2722, 23, 24, 26syl3anc 1249 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2821, 27eqtr2d 2230 . . . . . 6 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
29283expb 1206 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
306, 11, 17, 29ringpropd 13670 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring))
315, 30mpbird 167 . . 3 ((𝑅𝑉𝑂 ∈ Ring) → 𝑅 ∈ Ring)
3231ex 115 . 2 (𝑅𝑉 → (𝑂 ∈ Ring → 𝑅 ∈ Ring))
332, 32impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Ringcrg 13628  opprcoppr 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-mgp 13553  df-ur 13592  df-ring 13630  df-oppr 13700
This theorem is referenced by:  rhmopp  13808  opprnzrbg  13817
  Copyright terms: Public domain W3C validator