ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprringbg GIF version

Theorem opprringbg 13203
Description: Bidirectional form of opprring 13202. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprringbg (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))

Proof of Theorem opprringbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprring 13202 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
3 eqid 2177 . . . . . 6 (oppr𝑂) = (oppr𝑂)
43opprring 13202 . . . . 5 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
54adantl 277 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (oppr𝑂) ∈ Ring)
6 eqidd 2178 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅))
7 eqid 2177 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
81, 7opprbasg 13200 . . . . . 6 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
9 eqid 2177 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 13200 . . . . . 6 (𝑂 ∈ Ring → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10sylan9eq 2230 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘(oppr𝑂)))
12 eqid 2177 . . . . . . . 8 (+g𝑅) = (+g𝑅)
131, 12oppraddg 13201 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
14 eqid 2177 . . . . . . . 8 (+g𝑂) = (+g𝑂)
153, 14oppraddg 13201 . . . . . . 7 (𝑂 ∈ Ring → (+g𝑂) = (+g‘(oppr𝑂)))
1613, 15sylan9eq 2230 . . . . . 6 ((𝑅𝑉𝑂 ∈ Ring) → (+g𝑅) = (+g‘(oppr𝑂)))
1716oveqdr 5902 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
18 eqid 2177 . . . . . . . . 9 (.r𝑂) = (.r𝑂)
19 eqid 2177 . . . . . . . . 9 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
209, 18, 3, 19opprmulg 13196 . . . . . . . 8 ((𝑂 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
21203adant1l 1230 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
22 simp1l 1021 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
23 simp3 999 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
24 simp2 998 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
25 eqid 2177 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
267, 25, 1, 18opprmulg 13196 . . . . . . . 8 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2722, 23, 24, 26syl3anc 1238 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2821, 27eqtr2d 2211 . . . . . 6 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
29283expb 1204 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
306, 11, 17, 29ringpropd 13170 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring))
315, 30mpbird 167 . . 3 ((𝑅𝑉𝑂 ∈ Ring) → 𝑅 ∈ Ring)
3231ex 115 . 2 (𝑅𝑉 → (𝑂 ∈ Ring → 𝑅 ∈ Ring))
332, 32impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  cfv 5216  (class class class)co 5874  Basecbs 12456  +gcplusg 12530  .rcmulr 12531  Ringcrg 13132  opprcoppr 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-grp 12834  df-mgp 13084  df-ur 13096  df-ring 13134  df-oppr 13193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator