ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprringbg GIF version

Theorem opprringbg 13957
Description: Bidirectional form of opprring 13956. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprringbg (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))

Proof of Theorem opprringbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprring 13956 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
3 eqid 2207 . . . . . 6 (oppr𝑂) = (oppr𝑂)
43opprring 13956 . . . . 5 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
54adantl 277 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (oppr𝑂) ∈ Ring)
6 eqidd 2208 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅))
7 eqid 2207 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
81, 7opprbasg 13952 . . . . . 6 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
9 eqid 2207 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 13952 . . . . . 6 (𝑂 ∈ Ring → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10sylan9eq 2260 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘(oppr𝑂)))
12 eqid 2207 . . . . . . . 8 (+g𝑅) = (+g𝑅)
131, 12oppraddg 13953 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
14 eqid 2207 . . . . . . . 8 (+g𝑂) = (+g𝑂)
153, 14oppraddg 13953 . . . . . . 7 (𝑂 ∈ Ring → (+g𝑂) = (+g‘(oppr𝑂)))
1613, 15sylan9eq 2260 . . . . . 6 ((𝑅𝑉𝑂 ∈ Ring) → (+g𝑅) = (+g‘(oppr𝑂)))
1716oveqdr 5995 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
18 eqid 2207 . . . . . . . . 9 (.r𝑂) = (.r𝑂)
19 eqid 2207 . . . . . . . . 9 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
209, 18, 3, 19opprmulg 13948 . . . . . . . 8 ((𝑂 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
21203adant1l 1233 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
22 simp1l 1024 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
23 simp3 1002 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
24 simp2 1001 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
25 eqid 2207 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
267, 25, 1, 18opprmulg 13948 . . . . . . . 8 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2722, 23, 24, 26syl3anc 1250 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2821, 27eqtr2d 2241 . . . . . 6 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
29283expb 1207 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
306, 11, 17, 29ringpropd 13915 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring))
315, 30mpbird 167 . . 3 ((𝑅𝑉𝑂 ∈ Ring) → 𝑅 ∈ Ring)
3231ex 115 . 2 (𝑅𝑉 → (𝑂 ∈ Ring → 𝑅 ∈ Ring))
332, 32impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  .rcmulr 13025  Ringcrg 13873  opprcoppr 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-mgp 13798  df-ur 13837  df-ring 13875  df-oppr 13945
This theorem is referenced by:  rhmopp  14053  opprnzrbg  14062
  Copyright terms: Public domain W3C validator