ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprringbg GIF version

Theorem opprringbg 14043
Description: Bidirectional form of opprring 14042. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprringbg (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))

Proof of Theorem opprringbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprring 14042 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
3 eqid 2229 . . . . . 6 (oppr𝑂) = (oppr𝑂)
43opprring 14042 . . . . 5 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
54adantl 277 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (oppr𝑂) ∈ Ring)
6 eqidd 2230 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅))
7 eqid 2229 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
81, 7opprbasg 14038 . . . . . 6 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
9 eqid 2229 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 14038 . . . . . 6 (𝑂 ∈ Ring → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10sylan9eq 2282 . . . . 5 ((𝑅𝑉𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘(oppr𝑂)))
12 eqid 2229 . . . . . . . 8 (+g𝑅) = (+g𝑅)
131, 12oppraddg 14039 . . . . . . 7 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
14 eqid 2229 . . . . . . . 8 (+g𝑂) = (+g𝑂)
153, 14oppraddg 14039 . . . . . . 7 (𝑂 ∈ Ring → (+g𝑂) = (+g‘(oppr𝑂)))
1613, 15sylan9eq 2282 . . . . . 6 ((𝑅𝑉𝑂 ∈ Ring) → (+g𝑅) = (+g‘(oppr𝑂)))
1716oveqdr 6029 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
18 eqid 2229 . . . . . . . . 9 (.r𝑂) = (.r𝑂)
19 eqid 2229 . . . . . . . . 9 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
209, 18, 3, 19opprmulg 14034 . . . . . . . 8 ((𝑂 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
21203adant1l 1254 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
22 simp1l 1045 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅𝑉)
23 simp3 1023 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
24 simp2 1022 . . . . . . . 8 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
25 eqid 2229 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
267, 25, 1, 18opprmulg 14034 . . . . . . . 8 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2722, 23, 24, 26syl3anc 1271 . . . . . . 7 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
2821, 27eqtr2d 2263 . . . . . 6 (((𝑅𝑉𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
29283expb 1228 . . . . 5 (((𝑅𝑉𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
306, 11, 17, 29ringpropd 14001 . . . 4 ((𝑅𝑉𝑂 ∈ Ring) → (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring))
315, 30mpbird 167 . . 3 ((𝑅𝑉𝑂 ∈ Ring) → 𝑅 ∈ Ring)
3231ex 115 . 2 (𝑅𝑉 → (𝑂 ∈ Ring → 𝑅 ∈ Ring))
332, 32impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6001  Basecbs 13032  +gcplusg 13110  .rcmulr 13111  Ringcrg 13959  opprcoppr 14030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-mgp 13884  df-ur 13923  df-ring 13961  df-oppr 14031
This theorem is referenced by:  rhmopp  14140  opprnzrbg  14149
  Copyright terms: Public domain W3C validator