Step | Hyp | Ref
| Expression |
1 | | opprbas.1 |
. . 3
⊢ 𝑂 =
(oppr‘𝑅) |
2 | 1 | opprring 13202 |
. 2
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
3 | | eqid 2177 |
. . . . . 6
⊢
(oppr‘𝑂) = (oppr‘𝑂) |
4 | 3 | opprring 13202 |
. . . . 5
⊢ (𝑂 ∈ Ring →
(oppr‘𝑂) ∈ Ring) |
5 | 4 | adantl 277 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) →
(oppr‘𝑂) ∈ Ring) |
6 | | eqidd 2178 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅)) |
7 | | eqid 2177 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | 1, 7 | opprbasg 13200 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
9 | | eqid 2177 |
. . . . . . 7
⊢
(Base‘𝑂) =
(Base‘𝑂) |
10 | 3, 9 | opprbasg 13200 |
. . . . . 6
⊢ (𝑂 ∈ Ring →
(Base‘𝑂) =
(Base‘(oppr‘𝑂))) |
11 | 8, 10 | sylan9eq 2230 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → (Base‘𝑅) =
(Base‘(oppr‘𝑂))) |
12 | | eqid 2177 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
13 | 1, 12 | oppraddg 13201 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
14 | | eqid 2177 |
. . . . . . . 8
⊢
(+g‘𝑂) = (+g‘𝑂) |
15 | 3, 14 | oppraddg 13201 |
. . . . . . 7
⊢ (𝑂 ∈ Ring →
(+g‘𝑂) =
(+g‘(oppr‘𝑂))) |
16 | 13, 15 | sylan9eq 2230 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) →
(+g‘𝑅) =
(+g‘(oppr‘𝑂))) |
17 | 16 | oveqdr 5902 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑂))𝑦)) |
18 | | eqid 2177 |
. . . . . . . . 9
⊢
(.r‘𝑂) = (.r‘𝑂) |
19 | | eqid 2177 |
. . . . . . . . 9
⊢
(.r‘(oppr‘𝑂)) =
(.r‘(oppr‘𝑂)) |
20 | 9, 18, 3, 19 | opprmulg 13196 |
. . . . . . . 8
⊢ ((𝑂 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
21 | 20 | 3adant1l 1230 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
22 | | simp1l 1021 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ 𝑉) |
23 | | simp3 999 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) |
24 | | simp2 998 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
25 | | eqid 2177 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
26 | 7, 25, 1, 18 | opprmulg 13196 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) |
27 | 22, 23, 24, 26 | syl3anc 1238 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) |
28 | 21, 27 | eqtr2d 2211 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦)) |
29 | 28 | 3expb 1204 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦)) |
30 | 6, 11, 17, 29 | ringpropd 13170 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → (𝑅 ∈ Ring ↔
(oppr‘𝑂) ∈ Ring)) |
31 | 5, 30 | mpbird 167 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → 𝑅 ∈ Ring) |
32 | 31 | ex 115 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑂 ∈ Ring → 𝑅 ∈ Ring)) |
33 | 2, 32 | impbid2 143 |
1
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)) |