| Step | Hyp | Ref
 | Expression | 
| 1 |   | opprbas.1 | 
. . 3
⊢ 𝑂 =
(oppr‘𝑅) | 
| 2 | 1 | opprring 13635 | 
. 2
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) | 
| 3 |   | eqid 2196 | 
. . . . . 6
⊢
(oppr‘𝑂) = (oppr‘𝑂) | 
| 4 | 3 | opprring 13635 | 
. . . . 5
⊢ (𝑂 ∈ Ring →
(oppr‘𝑂) ∈ Ring) | 
| 5 | 4 | adantl 277 | 
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) →
(oppr‘𝑂) ∈ Ring) | 
| 6 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → (Base‘𝑅) = (Base‘𝑅)) | 
| 7 |   | eqid 2196 | 
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 8 | 1, 7 | opprbasg 13631 | 
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) | 
| 9 |   | eqid 2196 | 
. . . . . . 7
⊢
(Base‘𝑂) =
(Base‘𝑂) | 
| 10 | 3, 9 | opprbasg 13631 | 
. . . . . 6
⊢ (𝑂 ∈ Ring →
(Base‘𝑂) =
(Base‘(oppr‘𝑂))) | 
| 11 | 8, 10 | sylan9eq 2249 | 
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → (Base‘𝑅) =
(Base‘(oppr‘𝑂))) | 
| 12 |   | eqid 2196 | 
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 13 | 1, 12 | oppraddg 13632 | 
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) | 
| 14 |   | eqid 2196 | 
. . . . . . . 8
⊢
(+g‘𝑂) = (+g‘𝑂) | 
| 15 | 3, 14 | oppraddg 13632 | 
. . . . . . 7
⊢ (𝑂 ∈ Ring →
(+g‘𝑂) =
(+g‘(oppr‘𝑂))) | 
| 16 | 13, 15 | sylan9eq 2249 | 
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) →
(+g‘𝑅) =
(+g‘(oppr‘𝑂))) | 
| 17 | 16 | oveqdr 5950 | 
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑂))𝑦)) | 
| 18 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(.r‘𝑂) = (.r‘𝑂) | 
| 19 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(.r‘(oppr‘𝑂)) =
(.r‘(oppr‘𝑂)) | 
| 20 | 9, 18, 3, 19 | opprmulg 13627 | 
. . . . . . . 8
⊢ ((𝑂 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) | 
| 21 | 20 | 3adant1l 1232 | 
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) | 
| 22 |   | simp1l 1023 | 
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ 𝑉) | 
| 23 |   | simp3 1001 | 
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) | 
| 24 |   | simp2 1000 | 
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) | 
| 25 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 26 | 7, 25, 1, 18 | opprmulg 13627 | 
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) | 
| 27 | 22, 23, 24, 26 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) | 
| 28 | 21, 27 | eqtr2d 2230 | 
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦)) | 
| 29 | 28 | 3expb 1206 | 
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦)) | 
| 30 | 6, 11, 17, 29 | ringpropd 13594 | 
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → (𝑅 ∈ Ring ↔
(oppr‘𝑂) ∈ Ring)) | 
| 31 | 5, 30 | mpbird 167 | 
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑂 ∈ Ring) → 𝑅 ∈ Ring) | 
| 32 | 31 | ex 115 | 
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑂 ∈ Ring → 𝑅 ∈ Ring)) | 
| 33 | 2, 32 | impbid2 143 | 
1
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)) |