ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcl GIF version

Theorem tfrcl 6431
Description: Closure for transfinite recursion. As with tfr1on 6417, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcl.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcl.yx (𝜑𝑌 𝑋)
Assertion
Ref Expression
tfrcl (𝜑 → (𝐹𝑌) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹,𝑥   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑌(𝑥,𝑓)

Proof of Theorem tfrcl
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
2 orduni 4532 . . . 4 (Ord 𝑋 → Ord 𝑋)
31, 2syl 14 . . 3 (𝜑 → Ord 𝑋)
4 tfrcl.yx . . 3 (𝜑𝑌 𝑋)
5 ordelon 4419 . . 3 ((Ord 𝑋𝑌 𝑋) → 𝑌 ∈ On)
63, 4, 5syl2anc 411 . 2 (𝜑𝑌 ∈ On)
74ancli 323 . 2 (𝜑 → (𝜑𝑌 𝑋))
8 eleq1 2259 . . . . 5 (𝑤 = 𝑘 → (𝑤 𝑋𝑘 𝑋))
98anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑘 𝑋)))
10 fveq2 5561 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1110eleq1d 2265 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑘) ∈ 𝑆))
129, 11imbi12d 234 . . 3 (𝑤 = 𝑘 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)))
13 eleq1 2259 . . . . 5 (𝑤 = 𝑌 → (𝑤 𝑋𝑌 𝑋))
1413anbi2d 464 . . . 4 (𝑤 = 𝑌 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑌 𝑋)))
15 fveq2 5561 . . . . 5 (𝑤 = 𝑌 → (𝐹𝑤) = (𝐹𝑌))
1615eleq1d 2265 . . . 4 (𝑤 = 𝑌 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑌) ∈ 𝑆))
1714, 16imbi12d 234 . . 3 (𝑤 = 𝑌 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆)))
18 tfrcl.f . . . . . . 7 𝐹 = recs(𝐺)
19 tfrcl.g . . . . . . . 8 (𝜑 → Fun 𝐺)
2019ad2antrl 490 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
211ad2antrl 490 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
22 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
23223adant1r 1233 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
24233adant1l 1232 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
25 tfrcl.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
2625adantlr 477 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2726adantll 476 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
28 simprr 531 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 𝑋)
2918, 20, 21, 24, 27, 28tfrcldm 6430 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ dom 𝐹)
3018tfr2a 6388 . . . . . 6 (𝑤 ∈ dom 𝐹 → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3129, 30syl 14 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3219ad2antrl 490 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
3332adantr 276 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Fun 𝐺)
3433adantr 276 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Fun 𝐺)
351ad2antrl 490 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
3635adantr 276 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
3736adantr 276 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Ord 𝑋)
38 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝜑)
3938, 22syl3an1 1282 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
40393adant1r 1233 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
4138, 25sylan 283 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4241adantlr 477 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4336, 2syl 14 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
44 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘𝑤)
45 simplrr 536 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑤 𝑋)
4644, 45jca 306 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝑘𝑤𝑤 𝑋))
47 ordtr1 4424 . . . . . . . . . . . . . . . 16 (Ord 𝑋 → ((𝑘𝑤𝑤 𝑋) → 𝑘 𝑋))
4843, 46, 47sylc 62 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘 𝑋)
4948adantr 276 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 𝑋)
5018, 34, 37, 40, 42, 49tfrcldm 6430 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 ∈ dom 𝐹)
5138, 48jca 306 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝜑𝑘 𝑋))
5251imim1i 60 . . . . . . . . . . . . . 14 (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ 𝑆))
5352impcom 125 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝐹𝑘) ∈ 𝑆)
5450, 53jca 306 . . . . . . . . . . . 12 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5554ex 115 . . . . . . . . . . 11 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5655ralimdva 2564 . . . . . . . . . 10 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5756imp 124 . . . . . . . . 9 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5857an32s 568 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
59 tfrfun 6387 . . . . . . . . . . 11 Fun recs(𝐺)
6018funeqi 5280 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun recs(𝐺))
6159, 60mpbir 146 . . . . . . . . . 10 Fun 𝐹
6261a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐹)
63 ffvresb 5728 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6462, 63syl 14 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6558, 64mpbird 167 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤):𝑤𝑆)
66 vex 2766 . . . . . . 7 𝑤 ∈ V
67 fex 5794 . . . . . . 7 (((𝐹𝑤):𝑤𝑆𝑤 ∈ V) → (𝐹𝑤) ∈ V)
6865, 66, 67sylancl 413 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ V)
69 feq2 5394 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑓:𝑥𝑆𝑓:𝑤𝑆))
7069imbi1d 231 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
7170albidv 1838 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
72223expia 1207 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7372alrimiv 1888 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7473ralrimiva 2570 . . . . . . . 8 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7574ad2antrl 490 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7666sucid 4453 . . . . . . . . . 10 𝑤 ∈ suc 𝑤
7776a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ suc 𝑤)
78 suceq 4438 . . . . . . . . . . 11 (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤)
7978eleq1d 2265 . . . . . . . . . 10 (𝑥 = 𝑤 → (suc 𝑥𝑋 ↔ suc 𝑤𝑋))
8025ralrimiva 2570 . . . . . . . . . . 11 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
8180ad2antrl 490 . . . . . . . . . 10 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥 𝑋 suc 𝑥𝑋)
8279, 81, 28rspcdva 2873 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → suc 𝑤𝑋)
8377, 82jca 306 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋))
84 ordtr1 4424 . . . . . . . 8 (Ord 𝑋 → ((𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋) → 𝑤𝑋))
8521, 83, 84sylc 62 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤𝑋)
8671, 75, 85rspcdva 2873 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆))
87 feq1 5393 . . . . . . . 8 (𝑓 = (𝐹𝑤) → (𝑓:𝑤𝑆 ↔ (𝐹𝑤):𝑤𝑆))
88 fveq2 5561 . . . . . . . . 9 (𝑓 = (𝐹𝑤) → (𝐺𝑓) = (𝐺‘(𝐹𝑤)))
8988eleq1d 2265 . . . . . . . 8 (𝑓 = (𝐹𝑤) → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑤)) ∈ 𝑆))
9087, 89imbi12d 234 . . . . . . 7 (𝑓 = (𝐹𝑤) → ((𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9190spcgv 2851 . . . . . 6 ((𝐹𝑤) ∈ V → (∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) → ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9268, 86, 65, 91syl3c 63 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐺‘(𝐹𝑤)) ∈ 𝑆)
9331, 92eqeltrd 2273 . . . 4 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ 𝑆)
9493exp31 364 . . 3 (𝑤 ∈ On → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆)))
9512, 17, 94tfis3 4623 . 2 (𝑌 ∈ On → ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆))
966, 7, 95sylc 62 1 (𝜑 → (𝐹𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763   cuni 3840  Ord word 4398  Oncon0 4399  suc csuc 4401  dom cdm 4664  cres 4666  Fun wfun 5253  wf 5255  cfv 5259  recscrecs 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-recs 6372
This theorem is referenced by:  rdgon  6453  freccllem  6469  frecfcllem  6471
  Copyright terms: Public domain W3C validator