ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcl GIF version

Theorem tfrcl 6463
Description: Closure for transfinite recursion. As with tfr1on 6449, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcl.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcl.yx (𝜑𝑌 𝑋)
Assertion
Ref Expression
tfrcl (𝜑 → (𝐹𝑌) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹,𝑥   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑌(𝑥,𝑓)

Proof of Theorem tfrcl
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
2 orduni 4551 . . . 4 (Ord 𝑋 → Ord 𝑋)
31, 2syl 14 . . 3 (𝜑 → Ord 𝑋)
4 tfrcl.yx . . 3 (𝜑𝑌 𝑋)
5 ordelon 4438 . . 3 ((Ord 𝑋𝑌 𝑋) → 𝑌 ∈ On)
63, 4, 5syl2anc 411 . 2 (𝜑𝑌 ∈ On)
74ancli 323 . 2 (𝜑 → (𝜑𝑌 𝑋))
8 eleq1 2269 . . . . 5 (𝑤 = 𝑘 → (𝑤 𝑋𝑘 𝑋))
98anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑘 𝑋)))
10 fveq2 5589 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1110eleq1d 2275 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑘) ∈ 𝑆))
129, 11imbi12d 234 . . 3 (𝑤 = 𝑘 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)))
13 eleq1 2269 . . . . 5 (𝑤 = 𝑌 → (𝑤 𝑋𝑌 𝑋))
1413anbi2d 464 . . . 4 (𝑤 = 𝑌 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑌 𝑋)))
15 fveq2 5589 . . . . 5 (𝑤 = 𝑌 → (𝐹𝑤) = (𝐹𝑌))
1615eleq1d 2275 . . . 4 (𝑤 = 𝑌 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑌) ∈ 𝑆))
1714, 16imbi12d 234 . . 3 (𝑤 = 𝑌 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆)))
18 tfrcl.f . . . . . . 7 𝐹 = recs(𝐺)
19 tfrcl.g . . . . . . . 8 (𝜑 → Fun 𝐺)
2019ad2antrl 490 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
211ad2antrl 490 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
22 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
23223adant1r 1234 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
24233adant1l 1233 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
25 tfrcl.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
2625adantlr 477 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2726adantll 476 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
28 simprr 531 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 𝑋)
2918, 20, 21, 24, 27, 28tfrcldm 6462 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ dom 𝐹)
3018tfr2a 6420 . . . . . 6 (𝑤 ∈ dom 𝐹 → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3129, 30syl 14 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3219ad2antrl 490 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
3332adantr 276 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Fun 𝐺)
3433adantr 276 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Fun 𝐺)
351ad2antrl 490 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
3635adantr 276 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
3736adantr 276 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Ord 𝑋)
38 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝜑)
3938, 22syl3an1 1283 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
40393adant1r 1234 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
4138, 25sylan 283 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4241adantlr 477 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4336, 2syl 14 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
44 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘𝑤)
45 simplrr 536 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑤 𝑋)
4644, 45jca 306 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝑘𝑤𝑤 𝑋))
47 ordtr1 4443 . . . . . . . . . . . . . . . 16 (Ord 𝑋 → ((𝑘𝑤𝑤 𝑋) → 𝑘 𝑋))
4843, 46, 47sylc 62 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘 𝑋)
4948adantr 276 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 𝑋)
5018, 34, 37, 40, 42, 49tfrcldm 6462 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 ∈ dom 𝐹)
5138, 48jca 306 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝜑𝑘 𝑋))
5251imim1i 60 . . . . . . . . . . . . . 14 (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ 𝑆))
5352impcom 125 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝐹𝑘) ∈ 𝑆)
5450, 53jca 306 . . . . . . . . . . . 12 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5554ex 115 . . . . . . . . . . 11 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5655ralimdva 2574 . . . . . . . . . 10 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5756imp 124 . . . . . . . . 9 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5857an32s 568 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
59 tfrfun 6419 . . . . . . . . . . 11 Fun recs(𝐺)
6018funeqi 5301 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun recs(𝐺))
6159, 60mpbir 146 . . . . . . . . . 10 Fun 𝐹
6261a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐹)
63 ffvresb 5756 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6462, 63syl 14 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6558, 64mpbird 167 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤):𝑤𝑆)
66 vex 2776 . . . . . . 7 𝑤 ∈ V
67 fex 5826 . . . . . . 7 (((𝐹𝑤):𝑤𝑆𝑤 ∈ V) → (𝐹𝑤) ∈ V)
6865, 66, 67sylancl 413 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ V)
69 feq2 5419 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑓:𝑥𝑆𝑓:𝑤𝑆))
7069imbi1d 231 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
7170albidv 1848 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
72223expia 1208 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7372alrimiv 1898 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7473ralrimiva 2580 . . . . . . . 8 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7574ad2antrl 490 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7666sucid 4472 . . . . . . . . . 10 𝑤 ∈ suc 𝑤
7776a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ suc 𝑤)
78 suceq 4457 . . . . . . . . . . 11 (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤)
7978eleq1d 2275 . . . . . . . . . 10 (𝑥 = 𝑤 → (suc 𝑥𝑋 ↔ suc 𝑤𝑋))
8025ralrimiva 2580 . . . . . . . . . . 11 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
8180ad2antrl 490 . . . . . . . . . 10 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥 𝑋 suc 𝑥𝑋)
8279, 81, 28rspcdva 2886 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → suc 𝑤𝑋)
8377, 82jca 306 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋))
84 ordtr1 4443 . . . . . . . 8 (Ord 𝑋 → ((𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋) → 𝑤𝑋))
8521, 83, 84sylc 62 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤𝑋)
8671, 75, 85rspcdva 2886 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆))
87 feq1 5418 . . . . . . . 8 (𝑓 = (𝐹𝑤) → (𝑓:𝑤𝑆 ↔ (𝐹𝑤):𝑤𝑆))
88 fveq2 5589 . . . . . . . . 9 (𝑓 = (𝐹𝑤) → (𝐺𝑓) = (𝐺‘(𝐹𝑤)))
8988eleq1d 2275 . . . . . . . 8 (𝑓 = (𝐹𝑤) → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑤)) ∈ 𝑆))
9087, 89imbi12d 234 . . . . . . 7 (𝑓 = (𝐹𝑤) → ((𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9190spcgv 2864 . . . . . 6 ((𝐹𝑤) ∈ V → (∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) → ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9268, 86, 65, 91syl3c 63 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐺‘(𝐹𝑤)) ∈ 𝑆)
9331, 92eqeltrd 2283 . . . 4 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ 𝑆)
9493exp31 364 . . 3 (𝑤 ∈ On → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆)))
9512, 17, 94tfis3 4642 . 2 (𝑌 ∈ On → ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆))
966, 7, 95sylc 62 1 (𝜑 → (𝐹𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773   cuni 3856  Ord word 4417  Oncon0 4418  suc csuc 4420  dom cdm 4683  cres 4685  Fun wfun 5274  wf 5276  cfv 5280  recscrecs 6403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-recs 6404
This theorem is referenced by:  rdgon  6485  freccllem  6501  frecfcllem  6503
  Copyright terms: Public domain W3C validator