ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcl GIF version

Theorem tfrcl 6343
Description: Closure for transfinite recursion. As with tfr1on 6329, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcl.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcl.yx (𝜑𝑌 𝑋)
Assertion
Ref Expression
tfrcl (𝜑 → (𝐹𝑌) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹,𝑥   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑌(𝑥,𝑓)

Proof of Theorem tfrcl
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
2 orduni 4479 . . . 4 (Ord 𝑋 → Ord 𝑋)
31, 2syl 14 . . 3 (𝜑 → Ord 𝑋)
4 tfrcl.yx . . 3 (𝜑𝑌 𝑋)
5 ordelon 4368 . . 3 ((Ord 𝑋𝑌 𝑋) → 𝑌 ∈ On)
63, 4, 5syl2anc 409 . 2 (𝜑𝑌 ∈ On)
74ancli 321 . 2 (𝜑 → (𝜑𝑌 𝑋))
8 eleq1 2233 . . . . 5 (𝑤 = 𝑘 → (𝑤 𝑋𝑘 𝑋))
98anbi2d 461 . . . 4 (𝑤 = 𝑘 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑘 𝑋)))
10 fveq2 5496 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1110eleq1d 2239 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑘) ∈ 𝑆))
129, 11imbi12d 233 . . 3 (𝑤 = 𝑘 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)))
13 eleq1 2233 . . . . 5 (𝑤 = 𝑌 → (𝑤 𝑋𝑌 𝑋))
1413anbi2d 461 . . . 4 (𝑤 = 𝑌 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑌 𝑋)))
15 fveq2 5496 . . . . 5 (𝑤 = 𝑌 → (𝐹𝑤) = (𝐹𝑌))
1615eleq1d 2239 . . . 4 (𝑤 = 𝑌 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑌) ∈ 𝑆))
1714, 16imbi12d 233 . . 3 (𝑤 = 𝑌 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆)))
18 tfrcl.f . . . . . . 7 𝐹 = recs(𝐺)
19 tfrcl.g . . . . . . . 8 (𝜑 → Fun 𝐺)
2019ad2antrl 487 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
211ad2antrl 487 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
22 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
23223adant1r 1226 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
24233adant1l 1225 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
25 tfrcl.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
2625adantlr 474 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2726adantll 473 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
28 simprr 527 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 𝑋)
2918, 20, 21, 24, 27, 28tfrcldm 6342 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ dom 𝐹)
3018tfr2a 6300 . . . . . 6 (𝑤 ∈ dom 𝐹 → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3129, 30syl 14 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3219ad2antrl 487 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
3332adantr 274 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Fun 𝐺)
3433adantr 274 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Fun 𝐺)
351ad2antrl 487 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
3635adantr 274 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
3736adantr 274 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Ord 𝑋)
38 simplrl 530 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝜑)
3938, 22syl3an1 1266 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
40393adant1r 1226 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
4138, 25sylan 281 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4241adantlr 474 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4336, 2syl 14 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
44 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘𝑤)
45 simplrr 531 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑤 𝑋)
4644, 45jca 304 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝑘𝑤𝑤 𝑋))
47 ordtr1 4373 . . . . . . . . . . . . . . . 16 (Ord 𝑋 → ((𝑘𝑤𝑤 𝑋) → 𝑘 𝑋))
4843, 46, 47sylc 62 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘 𝑋)
4948adantr 274 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 𝑋)
5018, 34, 37, 40, 42, 49tfrcldm 6342 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 ∈ dom 𝐹)
5138, 48jca 304 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝜑𝑘 𝑋))
5251imim1i 60 . . . . . . . . . . . . . 14 (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ 𝑆))
5352impcom 124 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝐹𝑘) ∈ 𝑆)
5450, 53jca 304 . . . . . . . . . . . 12 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5554ex 114 . . . . . . . . . . 11 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5655ralimdva 2537 . . . . . . . . . 10 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5756imp 123 . . . . . . . . 9 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5857an32s 563 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
59 tfrfun 6299 . . . . . . . . . . 11 Fun recs(𝐺)
6018funeqi 5219 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun recs(𝐺))
6159, 60mpbir 145 . . . . . . . . . 10 Fun 𝐹
6261a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐹)
63 ffvresb 5659 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6462, 63syl 14 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6558, 64mpbird 166 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤):𝑤𝑆)
66 vex 2733 . . . . . . 7 𝑤 ∈ V
67 fex 5725 . . . . . . 7 (((𝐹𝑤):𝑤𝑆𝑤 ∈ V) → (𝐹𝑤) ∈ V)
6865, 66, 67sylancl 411 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ V)
69 feq2 5331 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑓:𝑥𝑆𝑓:𝑤𝑆))
7069imbi1d 230 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
7170albidv 1817 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
72223expia 1200 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7372alrimiv 1867 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7473ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7574ad2antrl 487 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7666sucid 4402 . . . . . . . . . 10 𝑤 ∈ suc 𝑤
7776a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ suc 𝑤)
78 suceq 4387 . . . . . . . . . . 11 (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤)
7978eleq1d 2239 . . . . . . . . . 10 (𝑥 = 𝑤 → (suc 𝑥𝑋 ↔ suc 𝑤𝑋))
8025ralrimiva 2543 . . . . . . . . . . 11 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
8180ad2antrl 487 . . . . . . . . . 10 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥 𝑋 suc 𝑥𝑋)
8279, 81, 28rspcdva 2839 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → suc 𝑤𝑋)
8377, 82jca 304 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋))
84 ordtr1 4373 . . . . . . . 8 (Ord 𝑋 → ((𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋) → 𝑤𝑋))
8521, 83, 84sylc 62 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤𝑋)
8671, 75, 85rspcdva 2839 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆))
87 feq1 5330 . . . . . . . 8 (𝑓 = (𝐹𝑤) → (𝑓:𝑤𝑆 ↔ (𝐹𝑤):𝑤𝑆))
88 fveq2 5496 . . . . . . . . 9 (𝑓 = (𝐹𝑤) → (𝐺𝑓) = (𝐺‘(𝐹𝑤)))
8988eleq1d 2239 . . . . . . . 8 (𝑓 = (𝐹𝑤) → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑤)) ∈ 𝑆))
9087, 89imbi12d 233 . . . . . . 7 (𝑓 = (𝐹𝑤) → ((𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9190spcgv 2817 . . . . . 6 ((𝐹𝑤) ∈ V → (∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) → ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9268, 86, 65, 91syl3c 63 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐺‘(𝐹𝑤)) ∈ 𝑆)
9331, 92eqeltrd 2247 . . . 4 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ 𝑆)
9493exp31 362 . . 3 (𝑤 ∈ On → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆)))
9512, 17, 94tfis3 4570 . 2 (𝑌 ∈ On → ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆))
966, 7, 95sylc 62 1 (𝜑 → (𝐹𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wal 1346   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730   cuni 3796  Ord word 4347  Oncon0 4348  suc csuc 4350  dom cdm 4611  cres 4613  Fun wfun 5192  wf 5194  cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-recs 6284
This theorem is referenced by:  rdgon  6365  freccllem  6381  frecfcllem  6383
  Copyright terms: Public domain W3C validator