| Step | Hyp | Ref
| Expression |
| 1 | | tfrcl.x |
. . . 4
⊢ (𝜑 → Ord 𝑋) |
| 2 | | orduni 4531 |
. . . 4
⊢ (Ord
𝑋 → Ord ∪ 𝑋) |
| 3 | 1, 2 | syl 14 |
. . 3
⊢ (𝜑 → Ord ∪ 𝑋) |
| 4 | | tfrcl.yx |
. . 3
⊢ (𝜑 → 𝑌 ∈ ∪ 𝑋) |
| 5 | | ordelon 4418 |
. . 3
⊢ ((Ord
∪ 𝑋 ∧ 𝑌 ∈ ∪ 𝑋) → 𝑌 ∈ On) |
| 6 | 3, 4, 5 | syl2anc 411 |
. 2
⊢ (𝜑 → 𝑌 ∈ On) |
| 7 | 4 | ancli 323 |
. 2
⊢ (𝜑 → (𝜑 ∧ 𝑌 ∈ ∪ 𝑋)) |
| 8 | | eleq1 2259 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝑤 ∈ ∪ 𝑋 ↔ 𝑘 ∈ ∪ 𝑋)) |
| 9 | 8 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ↔ (𝜑 ∧ 𝑘 ∈ ∪ 𝑋))) |
| 10 | | fveq2 5558 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) |
| 11 | 10 | eleq1d 2265 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑤) ∈ 𝑆 ↔ (𝐹‘𝑘) ∈ 𝑆)) |
| 12 | 9, 11 | imbi12d 234 |
. . 3
⊢ (𝑤 = 𝑘 → (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) → (𝐹‘𝑤) ∈ 𝑆) ↔ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆))) |
| 13 | | eleq1 2259 |
. . . . 5
⊢ (𝑤 = 𝑌 → (𝑤 ∈ ∪ 𝑋 ↔ 𝑌 ∈ ∪ 𝑋)) |
| 14 | 13 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝑌 → ((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ↔ (𝜑 ∧ 𝑌 ∈ ∪ 𝑋))) |
| 15 | | fveq2 5558 |
. . . . 5
⊢ (𝑤 = 𝑌 → (𝐹‘𝑤) = (𝐹‘𝑌)) |
| 16 | 15 | eleq1d 2265 |
. . . 4
⊢ (𝑤 = 𝑌 → ((𝐹‘𝑤) ∈ 𝑆 ↔ (𝐹‘𝑌) ∈ 𝑆)) |
| 17 | 14, 16 | imbi12d 234 |
. . 3
⊢ (𝑤 = 𝑌 → (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) → (𝐹‘𝑤) ∈ 𝑆) ↔ ((𝜑 ∧ 𝑌 ∈ ∪ 𝑋) → (𝐹‘𝑌) ∈ 𝑆))) |
| 18 | | tfrcl.f |
. . . . . . 7
⊢ 𝐹 = recs(𝐺) |
| 19 | | tfrcl.g |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐺) |
| 20 | 19 | ad2antrl 490 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Fun 𝐺) |
| 21 | 1 | ad2antrl 490 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Ord 𝑋) |
| 22 | | tfrcl.ex |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| 23 | 22 | 3adant1r 1233 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| 24 | 23 | 3adant1l 1232 |
. . . . . . 7
⊢ ((((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| 25 | | tfrcl.u |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 26 | 25 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 27 | 26 | adantll 476 |
. . . . . . 7
⊢ ((((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 28 | | simprr 531 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ ∪ 𝑋) |
| 29 | 18, 20, 21, 24, 27, 28 | tfrcldm 6421 |
. . . . . 6
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ dom 𝐹) |
| 30 | 18 | tfr2a 6379 |
. . . . . 6
⊢ (𝑤 ∈ dom 𝐹 → (𝐹‘𝑤) = (𝐺‘(𝐹 ↾ 𝑤))) |
| 31 | 29, 30 | syl 14 |
. . . . 5
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹‘𝑤) = (𝐺‘(𝐹 ↾ 𝑤))) |
| 32 | 19 | ad2antrl 490 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Fun 𝐺) |
| 33 | 32 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → Fun 𝐺) |
| 34 | 33 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → Fun 𝐺) |
| 35 | 1 | ad2antrl 490 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Ord 𝑋) |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → Ord 𝑋) |
| 37 | 36 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → Ord 𝑋) |
| 38 | | simplrl 535 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝜑) |
| 39 | 38, 22 | syl3an1 1282 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| 40 | 39 | 3adant1r 1233 |
. . . . . . . . . . . . . 14
⊢
(((((𝑤 ∈ On
∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋))
∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| 41 | 38, 25 | sylan 283 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 42 | 41 | adantlr 477 |
. . . . . . . . . . . . . 14
⊢
(((((𝑤 ∈ On
∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋))
∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
| 43 | 36, 2 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → Ord ∪
𝑋) |
| 44 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝑘 ∈ 𝑤) |
| 45 | | simplrr 536 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝑤 ∈ ∪ 𝑋) |
| 46 | 44, 45 | jca 306 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (𝑘 ∈ 𝑤 ∧ 𝑤 ∈ ∪ 𝑋)) |
| 47 | | ordtr1 4423 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
∪ 𝑋 → ((𝑘 ∈ 𝑤 ∧ 𝑤 ∈ ∪ 𝑋) → 𝑘 ∈ ∪ 𝑋)) |
| 48 | 43, 46, 47 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝑘 ∈ ∪ 𝑋) |
| 49 | 48 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → 𝑘 ∈ ∪ 𝑋) |
| 50 | 18, 34, 37, 40, 42, 49 | tfrcldm 6421 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → 𝑘 ∈ dom 𝐹) |
| 51 | 38, 48 | jca 306 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (𝜑 ∧ 𝑘 ∈ ∪ 𝑋)) |
| 52 | 51 | imim1i 60 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (𝐹‘𝑘) ∈ 𝑆)) |
| 53 | 52 | impcom 125 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → (𝐹‘𝑘) ∈ 𝑆) |
| 54 | 50, 53 | jca 306 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆)) |
| 55 | 54 | ex 115 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
| 56 | 55 | ralimdva 2564 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
| 57 | 56 | imp 124 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆)) |
| 58 | 57 | an32s 568 |
. . . . . . . 8
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆)) |
| 59 | | tfrfun 6378 |
. . . . . . . . . . 11
⊢ Fun
recs(𝐺) |
| 60 | 18 | funeqi 5279 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 ↔ Fun recs(𝐺)) |
| 61 | 59, 60 | mpbir 146 |
. . . . . . . . . 10
⊢ Fun 𝐹 |
| 62 | 61 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Fun 𝐹) |
| 63 | | ffvresb 5725 |
. . . . . . . . 9
⊢ (Fun
𝐹 → ((𝐹 ↾ 𝑤):𝑤⟶𝑆 ↔ ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
| 64 | 62, 63 | syl 14 |
. . . . . . . 8
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ((𝐹 ↾ 𝑤):𝑤⟶𝑆 ↔ ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
| 65 | 58, 64 | mpbird 167 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹 ↾ 𝑤):𝑤⟶𝑆) |
| 66 | | vex 2766 |
. . . . . . 7
⊢ 𝑤 ∈ V |
| 67 | | fex 5791 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝑤):𝑤⟶𝑆 ∧ 𝑤 ∈ V) → (𝐹 ↾ 𝑤) ∈ V) |
| 68 | 65, 66, 67 | sylancl 413 |
. . . . . 6
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹 ↾ 𝑤) ∈ V) |
| 69 | | feq2 5391 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑤⟶𝑆)) |
| 70 | 69 | imbi1d 231 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
| 71 | 70 | albidv 1838 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
| 72 | 22 | 3expia 1207 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 73 | 72 | alrimiv 1888 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 74 | 73 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 75 | 74 | ad2antrl 490 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 76 | 66 | sucid 4452 |
. . . . . . . . . 10
⊢ 𝑤 ∈ suc 𝑤 |
| 77 | 76 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ suc 𝑤) |
| 78 | | suceq 4437 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤) |
| 79 | 78 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (suc 𝑥 ∈ 𝑋 ↔ suc 𝑤 ∈ 𝑋)) |
| 80 | 25 | ralrimiva 2570 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ∪ 𝑋 suc 𝑥 ∈ 𝑋) |
| 81 | 80 | ad2antrl 490 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑥 ∈ ∪ 𝑋
suc 𝑥 ∈ 𝑋) |
| 82 | 79, 81, 28 | rspcdva 2873 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → suc 𝑤 ∈ 𝑋) |
| 83 | 77, 82 | jca 306 |
. . . . . . . 8
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝑤 ∈ suc 𝑤 ∧ suc 𝑤 ∈ 𝑋)) |
| 84 | | ordtr1 4423 |
. . . . . . . 8
⊢ (Ord
𝑋 → ((𝑤 ∈ suc 𝑤 ∧ suc 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝑋)) |
| 85 | 21, 83, 84 | sylc 62 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ 𝑋) |
| 86 | 71, 75, 85 | rspcdva 2873 |
. . . . . 6
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑓(𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
| 87 | | feq1 5390 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ↾ 𝑤) → (𝑓:𝑤⟶𝑆 ↔ (𝐹 ↾ 𝑤):𝑤⟶𝑆)) |
| 88 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ↾ 𝑤) → (𝐺‘𝑓) = (𝐺‘(𝐹 ↾ 𝑤))) |
| 89 | 88 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ↾ 𝑤) → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆)) |
| 90 | 87, 89 | imbi12d 234 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ↾ 𝑤) → ((𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ((𝐹 ↾ 𝑤):𝑤⟶𝑆 → (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆))) |
| 91 | 90 | spcgv 2851 |
. . . . . 6
⊢ ((𝐹 ↾ 𝑤) ∈ V → (∀𝑓(𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → ((𝐹 ↾ 𝑤):𝑤⟶𝑆 → (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆))) |
| 92 | 68, 86, 65, 91 | syl3c 63 |
. . . . 5
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆) |
| 93 | 31, 92 | eqeltrd 2273 |
. . . 4
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹‘𝑤) ∈ 𝑆) |
| 94 | 93 | exp31 364 |
. . 3
⊢ (𝑤 ∈ On → (∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → ((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) → (𝐹‘𝑤) ∈ 𝑆))) |
| 95 | 12, 17, 94 | tfis3 4622 |
. 2
⊢ (𝑌 ∈ On → ((𝜑 ∧ 𝑌 ∈ ∪ 𝑋) → (𝐹‘𝑌) ∈ 𝑆)) |
| 96 | 6, 7, 95 | sylc 62 |
1
⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝑆) |