Step | Hyp | Ref
| Expression |
1 | | tfrcl.x |
. . . 4
⊢ (𝜑 → Ord 𝑋) |
2 | | orduni 4477 |
. . . 4
⊢ (Ord
𝑋 → Ord ∪ 𝑋) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝜑 → Ord ∪ 𝑋) |
4 | | tfrcl.yx |
. . 3
⊢ (𝜑 → 𝑌 ∈ ∪ 𝑋) |
5 | | ordelon 4366 |
. . 3
⊢ ((Ord
∪ 𝑋 ∧ 𝑌 ∈ ∪ 𝑋) → 𝑌 ∈ On) |
6 | 3, 4, 5 | syl2anc 409 |
. 2
⊢ (𝜑 → 𝑌 ∈ On) |
7 | 4 | ancli 321 |
. 2
⊢ (𝜑 → (𝜑 ∧ 𝑌 ∈ ∪ 𝑋)) |
8 | | eleq1 2233 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝑤 ∈ ∪ 𝑋 ↔ 𝑘 ∈ ∪ 𝑋)) |
9 | 8 | anbi2d 461 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ↔ (𝜑 ∧ 𝑘 ∈ ∪ 𝑋))) |
10 | | fveq2 5494 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) |
11 | 10 | eleq1d 2239 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑤) ∈ 𝑆 ↔ (𝐹‘𝑘) ∈ 𝑆)) |
12 | 9, 11 | imbi12d 233 |
. . 3
⊢ (𝑤 = 𝑘 → (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) → (𝐹‘𝑤) ∈ 𝑆) ↔ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆))) |
13 | | eleq1 2233 |
. . . . 5
⊢ (𝑤 = 𝑌 → (𝑤 ∈ ∪ 𝑋 ↔ 𝑌 ∈ ∪ 𝑋)) |
14 | 13 | anbi2d 461 |
. . . 4
⊢ (𝑤 = 𝑌 → ((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ↔ (𝜑 ∧ 𝑌 ∈ ∪ 𝑋))) |
15 | | fveq2 5494 |
. . . . 5
⊢ (𝑤 = 𝑌 → (𝐹‘𝑤) = (𝐹‘𝑌)) |
16 | 15 | eleq1d 2239 |
. . . 4
⊢ (𝑤 = 𝑌 → ((𝐹‘𝑤) ∈ 𝑆 ↔ (𝐹‘𝑌) ∈ 𝑆)) |
17 | 14, 16 | imbi12d 233 |
. . 3
⊢ (𝑤 = 𝑌 → (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) → (𝐹‘𝑤) ∈ 𝑆) ↔ ((𝜑 ∧ 𝑌 ∈ ∪ 𝑋) → (𝐹‘𝑌) ∈ 𝑆))) |
18 | | tfrcl.f |
. . . . . . 7
⊢ 𝐹 = recs(𝐺) |
19 | | tfrcl.g |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐺) |
20 | 19 | ad2antrl 487 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Fun 𝐺) |
21 | 1 | ad2antrl 487 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Ord 𝑋) |
22 | | tfrcl.ex |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
23 | 22 | 3adant1r 1226 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
24 | 23 | 3adant1l 1225 |
. . . . . . 7
⊢ ((((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
25 | | tfrcl.u |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
26 | 25 | adantlr 474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
27 | 26 | adantll 473 |
. . . . . . 7
⊢ ((((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
28 | | simprr 527 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ ∪ 𝑋) |
29 | 18, 20, 21, 24, 27, 28 | tfrcldm 6339 |
. . . . . 6
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ dom 𝐹) |
30 | 18 | tfr2a 6297 |
. . . . . 6
⊢ (𝑤 ∈ dom 𝐹 → (𝐹‘𝑤) = (𝐺‘(𝐹 ↾ 𝑤))) |
31 | 29, 30 | syl 14 |
. . . . 5
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹‘𝑤) = (𝐺‘(𝐹 ↾ 𝑤))) |
32 | 19 | ad2antrl 487 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Fun 𝐺) |
33 | 32 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → Fun 𝐺) |
34 | 33 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → Fun 𝐺) |
35 | 1 | ad2antrl 487 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Ord 𝑋) |
36 | 35 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → Ord 𝑋) |
37 | 36 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → Ord 𝑋) |
38 | | simplrl 530 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝜑) |
39 | 38, 22 | syl3an1 1266 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
40 | 39 | 3adant1r 1226 |
. . . . . . . . . . . . . 14
⊢
(((((𝑤 ∈ On
∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋))
∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
41 | 38, 25 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
42 | 41 | adantlr 474 |
. . . . . . . . . . . . . 14
⊢
(((((𝑤 ∈ On
∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋))
∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
43 | 36, 2 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → Ord ∪
𝑋) |
44 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝑘 ∈ 𝑤) |
45 | | simplrr 531 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝑤 ∈ ∪ 𝑋) |
46 | 44, 45 | jca 304 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (𝑘 ∈ 𝑤 ∧ 𝑤 ∈ ∪ 𝑋)) |
47 | | ordtr1 4371 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
∪ 𝑋 → ((𝑘 ∈ 𝑤 ∧ 𝑤 ∈ ∪ 𝑋) → 𝑘 ∈ ∪ 𝑋)) |
48 | 43, 46, 47 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → 𝑘 ∈ ∪ 𝑋) |
49 | 48 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → 𝑘 ∈ ∪ 𝑋) |
50 | 18, 34, 37, 40, 42, 49 | tfrcldm 6339 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → 𝑘 ∈ dom 𝐹) |
51 | 38, 48 | jca 304 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (𝜑 ∧ 𝑘 ∈ ∪ 𝑋)) |
52 | 51 | imim1i 60 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (𝐹‘𝑘) ∈ 𝑆)) |
53 | 52 | impcom 124 |
. . . . . . . . . . . . 13
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → (𝐹‘𝑘) ∈ 𝑆) |
54 | 50, 53 | jca 304 |
. . . . . . . . . . . 12
⊢ ((((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) ∧ ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆)) |
55 | 54 | ex 114 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ 𝑘 ∈ 𝑤) → (((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
56 | 55 | ralimdva 2537 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
57 | 56 | imp 123 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) → ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆)) |
58 | 57 | an32s 563 |
. . . . . . . 8
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆)) |
59 | | tfrfun 6296 |
. . . . . . . . . . 11
⊢ Fun
recs(𝐺) |
60 | 18 | funeqi 5217 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 ↔ Fun recs(𝐺)) |
61 | 59, 60 | mpbir 145 |
. . . . . . . . . 10
⊢ Fun 𝐹 |
62 | 61 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → Fun 𝐹) |
63 | | ffvresb 5656 |
. . . . . . . . 9
⊢ (Fun
𝐹 → ((𝐹 ↾ 𝑤):𝑤⟶𝑆 ↔ ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
64 | 62, 63 | syl 14 |
. . . . . . . 8
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ((𝐹 ↾ 𝑤):𝑤⟶𝑆 ↔ ∀𝑘 ∈ 𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑆))) |
65 | 58, 64 | mpbird 166 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹 ↾ 𝑤):𝑤⟶𝑆) |
66 | | vex 2733 |
. . . . . . 7
⊢ 𝑤 ∈ V |
67 | | fex 5722 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝑤):𝑤⟶𝑆 ∧ 𝑤 ∈ V) → (𝐹 ↾ 𝑤) ∈ V) |
68 | 65, 66, 67 | sylancl 411 |
. . . . . 6
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹 ↾ 𝑤) ∈ V) |
69 | | feq2 5329 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑓:𝑥⟶𝑆 ↔ 𝑓:𝑤⟶𝑆)) |
70 | 69 | imbi1d 230 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
71 | 70 | albidv 1817 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆))) |
72 | 22 | 3expia 1200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
73 | 72 | alrimiv 1867 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
74 | 73 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
75 | 74 | ad2antrl 487 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
76 | 66 | sucid 4400 |
. . . . . . . . . 10
⊢ 𝑤 ∈ suc 𝑤 |
77 | 76 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ suc 𝑤) |
78 | | suceq 4385 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤) |
79 | 78 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (suc 𝑥 ∈ 𝑋 ↔ suc 𝑤 ∈ 𝑋)) |
80 | 25 | ralrimiva 2543 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ∪ 𝑋 suc 𝑥 ∈ 𝑋) |
81 | 80 | ad2antrl 487 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑥 ∈ ∪ 𝑋
suc 𝑥 ∈ 𝑋) |
82 | 79, 81, 28 | rspcdva 2839 |
. . . . . . . . 9
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → suc 𝑤 ∈ 𝑋) |
83 | 77, 82 | jca 304 |
. . . . . . . 8
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝑤 ∈ suc 𝑤 ∧ suc 𝑤 ∈ 𝑋)) |
84 | | ordtr1 4371 |
. . . . . . . 8
⊢ (Ord
𝑋 → ((𝑤 ∈ suc 𝑤 ∧ suc 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝑋)) |
85 | 21, 83, 84 | sylc 62 |
. . . . . . 7
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → 𝑤 ∈ 𝑋) |
86 | 71, 75, 85 | rspcdva 2839 |
. . . . . 6
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → ∀𝑓(𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
87 | | feq1 5328 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ↾ 𝑤) → (𝑓:𝑤⟶𝑆 ↔ (𝐹 ↾ 𝑤):𝑤⟶𝑆)) |
88 | | fveq2 5494 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ↾ 𝑤) → (𝐺‘𝑓) = (𝐺‘(𝐹 ↾ 𝑤))) |
89 | 88 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ↾ 𝑤) → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆)) |
90 | 87, 89 | imbi12d 233 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ↾ 𝑤) → ((𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ ((𝐹 ↾ 𝑤):𝑤⟶𝑆 → (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆))) |
91 | 90 | spcgv 2817 |
. . . . . 6
⊢ ((𝐹 ↾ 𝑤) ∈ V → (∀𝑓(𝑓:𝑤⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → ((𝐹 ↾ 𝑤):𝑤⟶𝑆 → (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆))) |
92 | 68, 86, 65, 91 | syl3c 63 |
. . . . 5
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐺‘(𝐹 ↾ 𝑤)) ∈ 𝑆) |
93 | 31, 92 | eqeltrd 2247 |
. . . 4
⊢ (((𝑤 ∈ On ∧ ∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆)) ∧ (𝜑 ∧ 𝑤 ∈ ∪ 𝑋)) → (𝐹‘𝑤) ∈ 𝑆) |
94 | 93 | exp31 362 |
. . 3
⊢ (𝑤 ∈ On → (∀𝑘 ∈ 𝑤 ((𝜑 ∧ 𝑘 ∈ ∪ 𝑋) → (𝐹‘𝑘) ∈ 𝑆) → ((𝜑 ∧ 𝑤 ∈ ∪ 𝑋) → (𝐹‘𝑤) ∈ 𝑆))) |
95 | 12, 17, 94 | tfis3 4568 |
. 2
⊢ (𝑌 ∈ On → ((𝜑 ∧ 𝑌 ∈ ∪ 𝑋) → (𝐹‘𝑌) ∈ 𝑆)) |
96 | 6, 7, 95 | sylc 62 |
1
⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝑆) |