ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcl GIF version

Theorem tfrcl 6191
Description: Closure for transfinite recursion. As with tfr1on 6177, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcl.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcl.yx (𝜑𝑌 𝑋)
Assertion
Ref Expression
tfrcl (𝜑 → (𝐹𝑌) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹,𝑥   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑌(𝑥,𝑓)

Proof of Theorem tfrcl
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . 4 (𝜑 → Ord 𝑋)
2 orduni 4349 . . . 4 (Ord 𝑋 → Ord 𝑋)
31, 2syl 14 . . 3 (𝜑 → Ord 𝑋)
4 tfrcl.yx . . 3 (𝜑𝑌 𝑋)
5 ordelon 4243 . . 3 ((Ord 𝑋𝑌 𝑋) → 𝑌 ∈ On)
63, 4, 5syl2anc 406 . 2 (𝜑𝑌 ∈ On)
74ancli 319 . 2 (𝜑 → (𝜑𝑌 𝑋))
8 eleq1 2162 . . . . 5 (𝑤 = 𝑘 → (𝑤 𝑋𝑘 𝑋))
98anbi2d 455 . . . 4 (𝑤 = 𝑘 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑘 𝑋)))
10 fveq2 5353 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1110eleq1d 2168 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑘) ∈ 𝑆))
129, 11imbi12d 233 . . 3 (𝑤 = 𝑘 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)))
13 eleq1 2162 . . . . 5 (𝑤 = 𝑌 → (𝑤 𝑋𝑌 𝑋))
1413anbi2d 455 . . . 4 (𝑤 = 𝑌 → ((𝜑𝑤 𝑋) ↔ (𝜑𝑌 𝑋)))
15 fveq2 5353 . . . . 5 (𝑤 = 𝑌 → (𝐹𝑤) = (𝐹𝑌))
1615eleq1d 2168 . . . 4 (𝑤 = 𝑌 → ((𝐹𝑤) ∈ 𝑆 ↔ (𝐹𝑌) ∈ 𝑆))
1714, 16imbi12d 233 . . 3 (𝑤 = 𝑌 → (((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆) ↔ ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆)))
18 tfrcl.f . . . . . . 7 𝐹 = recs(𝐺)
19 tfrcl.g . . . . . . . 8 (𝜑 → Fun 𝐺)
2019ad2antrl 477 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
211ad2antrl 477 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
22 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
23223adant1r 1177 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
24233adant1l 1176 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
25 tfrcl.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
2625adantlr 464 . . . . . . . 8 (((𝜑𝑤 𝑋) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2726adantll 463 . . . . . . 7 ((((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
28 simprr 502 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 𝑋)
2918, 20, 21, 24, 27, 28tfrcldm 6190 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ dom 𝐹)
3018tfr2a 6148 . . . . . 6 (𝑤 ∈ dom 𝐹 → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3129, 30syl 14 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) = (𝐺‘(𝐹𝑤)))
3219ad2antrl 477 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Fun 𝐺)
3332adantr 272 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Fun 𝐺)
3433adantr 272 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Fun 𝐺)
351ad2antrl 477 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → Ord 𝑋)
3635adantr 272 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
3736adantr 272 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → Ord 𝑋)
38 simplrl 505 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝜑)
3938, 22syl3an1 1217 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
40393adant1r 1177 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
4138, 25sylan 279 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4241adantlr 464 . . . . . . . . . . . . . 14 (((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
4336, 2syl 14 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → Ord 𝑋)
44 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘𝑤)
45 simplrr 506 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑤 𝑋)
4644, 45jca 302 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝑘𝑤𝑤 𝑋))
47 ordtr1 4248 . . . . . . . . . . . . . . . 16 (Ord 𝑋 → ((𝑘𝑤𝑤 𝑋) → 𝑘 𝑋))
4843, 46, 47sylc 62 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → 𝑘 𝑋)
4948adantr 272 . . . . . . . . . . . . . 14 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 𝑋)
5018, 34, 37, 40, 42, 49tfrcldm 6190 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → 𝑘 ∈ dom 𝐹)
5138, 48jca 302 . . . . . . . . . . . . . . 15 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝜑𝑘 𝑋))
5251imim1i 60 . . . . . . . . . . . . . 14 (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ 𝑆))
5352impcom 124 . . . . . . . . . . . . 13 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝐹𝑘) ∈ 𝑆)
5450, 53jca 302 . . . . . . . . . . . 12 ((((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) ∧ ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5554ex 114 . . . . . . . . . . 11 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ 𝑘𝑤) → (((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5655ralimdva 2458 . . . . . . . . . 10 ((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
5756imp 123 . . . . . . . . 9 (((𝑤 ∈ On ∧ (𝜑𝑤 𝑋)) ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
5857an32s 538 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆))
59 tfrfun 6147 . . . . . . . . . . 11 Fun recs(𝐺)
6018funeqi 5080 . . . . . . . . . . 11 (Fun 𝐹 ↔ Fun recs(𝐺))
6159, 60mpbir 145 . . . . . . . . . 10 Fun 𝐹
6261a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → Fun 𝐹)
63 ffvresb 5515 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6462, 63syl 14 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ((𝐹𝑤):𝑤𝑆 ↔ ∀𝑘𝑤 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑆)))
6558, 64mpbird 166 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤):𝑤𝑆)
66 vex 2644 . . . . . . 7 𝑤 ∈ V
67 fex 5579 . . . . . . 7 (((𝐹𝑤):𝑤𝑆𝑤 ∈ V) → (𝐹𝑤) ∈ V)
6865, 66, 67sylancl 407 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ V)
69 feq2 5192 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑓:𝑥𝑆𝑓:𝑤𝑆))
7069imbi1d 230 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
7170albidv 1763 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆)))
72223expia 1151 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7372alrimiv 1813 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7473ralrimiva 2464 . . . . . . . 8 (𝜑 → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7574ad2antrl 477 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥𝑋𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
7666sucid 4277 . . . . . . . . . 10 𝑤 ∈ suc 𝑤
7776a1i 9 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤 ∈ suc 𝑤)
78 suceq 4262 . . . . . . . . . . 11 (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤)
7978eleq1d 2168 . . . . . . . . . 10 (𝑥 = 𝑤 → (suc 𝑥𝑋 ↔ suc 𝑤𝑋))
8025ralrimiva 2464 . . . . . . . . . . 11 (𝜑 → ∀𝑥 𝑋 suc 𝑥𝑋)
8180ad2antrl 477 . . . . . . . . . 10 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑥 𝑋 suc 𝑥𝑋)
8279, 81, 28rspcdva 2749 . . . . . . . . 9 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → suc 𝑤𝑋)
8377, 82jca 302 . . . . . . . 8 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋))
84 ordtr1 4248 . . . . . . . 8 (Ord 𝑋 → ((𝑤 ∈ suc 𝑤 ∧ suc 𝑤𝑋) → 𝑤𝑋))
8521, 83, 84sylc 62 . . . . . . 7 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → 𝑤𝑋)
8671, 75, 85rspcdva 2749 . . . . . 6 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → ∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆))
87 feq1 5191 . . . . . . . 8 (𝑓 = (𝐹𝑤) → (𝑓:𝑤𝑆 ↔ (𝐹𝑤):𝑤𝑆))
88 fveq2 5353 . . . . . . . . 9 (𝑓 = (𝐹𝑤) → (𝐺𝑓) = (𝐺‘(𝐹𝑤)))
8988eleq1d 2168 . . . . . . . 8 (𝑓 = (𝐹𝑤) → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺‘(𝐹𝑤)) ∈ 𝑆))
9087, 89imbi12d 233 . . . . . . 7 (𝑓 = (𝐹𝑤) → ((𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9190spcgv 2728 . . . . . 6 ((𝐹𝑤) ∈ V → (∀𝑓(𝑓:𝑤𝑆 → (𝐺𝑓) ∈ 𝑆) → ((𝐹𝑤):𝑤𝑆 → (𝐺‘(𝐹𝑤)) ∈ 𝑆)))
9268, 86, 65, 91syl3c 63 . . . . 5 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐺‘(𝐹𝑤)) ∈ 𝑆)
9331, 92eqeltrd 2176 . . . 4 (((𝑤 ∈ On ∧ ∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆)) ∧ (𝜑𝑤 𝑋)) → (𝐹𝑤) ∈ 𝑆)
9493exp31 359 . . 3 (𝑤 ∈ On → (∀𝑘𝑤 ((𝜑𝑘 𝑋) → (𝐹𝑘) ∈ 𝑆) → ((𝜑𝑤 𝑋) → (𝐹𝑤) ∈ 𝑆)))
9512, 17, 94tfis3 4438 . 2 (𝑌 ∈ On → ((𝜑𝑌 𝑋) → (𝐹𝑌) ∈ 𝑆))
966, 7, 95sylc 62 1 (𝜑 → (𝐹𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 930  wal 1297   = wceq 1299  wcel 1448  wral 2375  Vcvv 2641   cuni 3683  Ord word 4222  Oncon0 4223  suc csuc 4225  dom cdm 4477  cres 4479  Fun wfun 5053  wf 5055  cfv 5059  recscrecs 6131
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-recs 6132
This theorem is referenced by:  rdgon  6213  freccllem  6229  frecfcllem  6231
  Copyright terms: Public domain W3C validator