| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant3r1 1214 3adant3r2 1215 3adant3r3 1216 3adant1l 1232 3adant1r 1233 mp3an1 1336 soinxp 4744 sotri 5077 fnfco 5449 mpoeq3dva 6008 fovcdmda 6089 ovelrn 6094 fnmpoovd 6300 nnmsucr 6573 fidifsnid 6967 exmidpw 7004 undiffi 7021 fidcenumlemim 7053 ltpopr 7707 ltexprlemdisj 7718 recexprlemdisj 7742 mul4 8203 add4 8232 2addsub 8285 addsubeq4 8286 subadd4 8315 muladd 8455 ltleadd 8518 divmulap 8747 divap0 8756 div23ap 8763 div12ap 8766 divsubdirap 8780 divcanap5 8786 divmuleqap 8789 divcanap6 8791 divdiv32ap 8792 div2subap 8909 letrp1 8920 lemul12b 8933 lediv1 8941 cju 9033 nndivre 9071 nndivtr 9077 nn0addge1 9340 nn0addge2 9341 peano2uz2 9479 uzind 9483 uzind3 9485 fzind 9487 fnn0ind 9488 uzind4 9708 qre 9745 irrmul 9767 rpdivcl 9800 rerpdivcl 9805 iccshftr 10115 iccshftl 10117 iccdil 10119 icccntr 10121 fzaddel 10180 fzrev 10205 frec2uzf1od 10549 expdivap 10733 fundm2domnop0 10988 2shfti 11113 iooinsup 11559 isermulc2 11622 dvds2add 12107 dvds2sub 12108 dvdstr 12110 alzdvds 12136 divalg2 12208 lcmgcdlem 12370 lcmgcdeq 12376 isprm6 12440 pcqcl 12600 mgmplusf 13169 grpinva 13189 ismndd 13240 imasmnd2 13255 idmhm 13272 issubm2 13276 submid 13280 0mhm 13289 resmhm 13290 resmhm2 13291 resmhm2b 13292 mhmco 13293 mhmima 13294 gsumwsubmcl 13299 gsumwmhm 13301 grpinvcnv 13371 grpinvnzcl 13375 grpsubf 13382 imasgrp2 13417 qusgrp2 13420 mhmfmhm 13424 mulgnnsubcl 13441 mulgnn0z 13456 mulgnndir 13458 issubg4m 13500 isnsg3 13514 nsgid 13522 qusadd 13541 ghmmhm 13560 ghmmhmb 13561 idghm 13566 resghm 13567 ghmf1 13580 kerf1ghm 13581 qusghm 13589 ghmfghm 13633 invghm 13636 ablnsg 13641 srgfcl 13706 srgmulgass 13722 srglmhm 13726 srgrmhm 13727 ringlghm 13794 ringrghm 13795 opprringbg 13813 mulgass3 13818 isnzr2 13917 subrngringnsg 13938 issubrng2 13943 issubrg2 13974 domnmuln0 14006 islmodd 14026 lmodscaf 14043 lcomf 14060 rmodislmodlem 14083 issubrgd 14185 qusrhm 14261 qusmul2 14262 crngridl 14263 qusmulrng 14265 znidom 14390 psraddcl 14413 tgclb 14508 topbas 14510 neissex 14608 cnpnei 14662 txcnp 14714 psmetxrge0 14775 psmetlecl 14777 xmetlecl 14810 xmettpos 14813 elbl3ps 14837 elbl3 14838 metss 14937 comet 14942 bdxmet 14944 bdmet 14945 bl2ioo 14993 divcnap 15008 cncfcdm 15025 divccncfap 15033 dvrecap 15156 dvmptfsum 15168 cosz12 15223 gausslemma2dlem1a 15506 |
| Copyright terms: Public domain | W3C validator |