| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant3r1 1214 3adant3r2 1215 3adant3r3 1216 3adant1l 1232 3adant1r 1233 mp3an1 1335 soinxp 4734 sotri 5066 fnfco 5435 mpoeq3dva 5990 fovcdmda 6071 ovelrn 6076 fnmpoovd 6282 nnmsucr 6555 fidifsnid 6941 exmidpw 6978 undiffi 6995 fidcenumlemim 7027 ltpopr 7679 ltexprlemdisj 7690 recexprlemdisj 7714 mul4 8175 add4 8204 2addsub 8257 addsubeq4 8258 subadd4 8287 muladd 8427 ltleadd 8490 divmulap 8719 divap0 8728 div23ap 8735 div12ap 8738 divsubdirap 8752 divcanap5 8758 divmuleqap 8761 divcanap6 8763 divdiv32ap 8764 div2subap 8881 letrp1 8892 lemul12b 8905 lediv1 8913 cju 9005 nndivre 9043 nndivtr 9049 nn0addge1 9312 nn0addge2 9313 peano2uz2 9450 uzind 9454 uzind3 9456 fzind 9458 fnn0ind 9459 uzind4 9679 qre 9716 irrmul 9738 rpdivcl 9771 rerpdivcl 9776 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 fzaddel 10151 fzrev 10176 frec2uzf1od 10515 expdivap 10699 2shfti 11013 iooinsup 11459 isermulc2 11522 dvds2add 12007 dvds2sub 12008 dvdstr 12010 alzdvds 12036 divalg2 12108 lcmgcdlem 12270 lcmgcdeq 12276 isprm6 12340 pcqcl 12500 mgmplusf 13068 grpinva 13088 ismndd 13139 imasmnd2 13154 idmhm 13171 issubm2 13175 submid 13179 0mhm 13188 resmhm 13189 resmhm2 13190 resmhm2b 13191 mhmco 13192 mhmima 13193 gsumwsubmcl 13198 gsumwmhm 13200 grpinvcnv 13270 grpinvnzcl 13274 grpsubf 13281 imasgrp2 13316 qusgrp2 13319 mhmfmhm 13323 mulgnnsubcl 13340 mulgnn0z 13355 mulgnndir 13357 issubg4m 13399 isnsg3 13413 nsgid 13421 qusadd 13440 ghmmhm 13459 ghmmhmb 13460 idghm 13465 resghm 13466 ghmf1 13479 kerf1ghm 13480 qusghm 13488 ghmfghm 13532 invghm 13535 ablnsg 13540 srgfcl 13605 srgmulgass 13621 srglmhm 13625 srgrmhm 13626 ringlghm 13693 ringrghm 13694 opprringbg 13712 mulgass3 13717 isnzr2 13816 subrngringnsg 13837 issubrng2 13842 issubrg2 13873 domnmuln0 13905 islmodd 13925 lmodscaf 13942 lcomf 13959 rmodislmodlem 13982 issubrgd 14084 qusrhm 14160 qusmul2 14161 crngridl 14162 qusmulrng 14164 znidom 14289 psraddcl 14308 tgclb 14385 topbas 14387 neissex 14485 cnpnei 14539 txcnp 14591 psmetxrge0 14652 psmetlecl 14654 xmetlecl 14687 xmettpos 14690 elbl3ps 14714 elbl3 14715 metss 14814 comet 14819 bdxmet 14821 bdmet 14822 bl2ioo 14870 divcnap 14885 cncfcdm 14902 divccncfap 14910 dvrecap 15033 dvmptfsum 15045 cosz12 15100 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |