| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1226 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant3r1 1236 3adant3r2 1237 3adant3r3 1238 3adant1l 1254 3adant1r 1255 mp3an1 1358 soinxp 4788 sotri 5123 fnfco 5499 mpoeq3dva 6067 fovcdmda 6148 ovelrn 6153 fnmpoovd 6359 nnmsucr 6632 fidifsnid 7029 exmidpw 7066 undiffi 7083 fidcenumlemim 7115 ltpopr 7778 ltexprlemdisj 7789 recexprlemdisj 7813 mul4 8274 add4 8303 2addsub 8356 addsubeq4 8357 subadd4 8386 muladd 8526 ltleadd 8589 divmulap 8818 divap0 8827 div23ap 8834 div12ap 8837 divsubdirap 8851 divcanap5 8857 divmuleqap 8860 divcanap6 8862 divdiv32ap 8863 div2subap 8980 letrp1 8991 lemul12b 9004 lediv1 9012 cju 9104 nndivre 9142 nndivtr 9148 nn0addge1 9411 nn0addge2 9412 peano2uz2 9550 uzind 9554 uzind3 9556 fzind 9558 fnn0ind 9559 uzind4 9779 qre 9816 irrmul 9838 rpdivcl 9871 rerpdivcl 9876 iccshftr 10186 iccshftl 10188 iccdil 10190 icccntr 10192 fzaddel 10251 fzrev 10276 frec2uzf1od 10623 expdivap 10807 fundm2domnop0 11062 swrdwrdsymbg 11191 ccatpfx 11228 swrdccat 11262 2shfti 11337 iooinsup 11783 isermulc2 11846 dvds2add 12331 dvds2sub 12332 dvdstr 12334 alzdvds 12360 divalg2 12432 lcmgcdlem 12594 lcmgcdeq 12600 isprm6 12664 pcqcl 12824 mgmplusf 13394 grpinva 13414 ismndd 13465 imasmnd2 13480 idmhm 13497 issubm2 13501 submid 13505 0mhm 13514 resmhm 13515 resmhm2 13516 resmhm2b 13517 mhmco 13518 mhmima 13519 gsumwsubmcl 13524 gsumwmhm 13526 grpinvcnv 13596 grpinvnzcl 13600 grpsubf 13607 imasgrp2 13642 qusgrp2 13645 mhmfmhm 13649 mulgnnsubcl 13666 mulgnn0z 13681 mulgnndir 13683 issubg4m 13725 isnsg3 13739 nsgid 13747 qusadd 13766 ghmmhm 13785 ghmmhmb 13786 idghm 13791 resghm 13792 ghmf1 13805 kerf1ghm 13806 qusghm 13814 ghmfghm 13858 invghm 13861 ablnsg 13866 srgfcl 13931 srgmulgass 13947 srglmhm 13951 srgrmhm 13952 ringlghm 14019 ringrghm 14020 opprringbg 14038 mulgass3 14043 isnzr2 14142 subrngringnsg 14163 issubrng2 14168 issubrg2 14199 domnmuln0 14231 islmodd 14251 lmodscaf 14268 lcomf 14285 rmodislmodlem 14308 issubrgd 14410 qusrhm 14486 qusmul2 14487 crngridl 14488 qusmulrng 14490 znidom 14615 psraddcl 14638 tgclb 14733 topbas 14735 neissex 14833 cnpnei 14887 txcnp 14939 psmetxrge0 15000 psmetlecl 15002 xmetlecl 15035 xmettpos 15038 elbl3ps 15062 elbl3 15063 metss 15162 comet 15167 bdxmet 15169 bdmet 15170 bl2ioo 15218 divcnap 15233 cncfcdm 15250 divccncfap 15258 dvrecap 15381 dvmptfsum 15393 cosz12 15448 gausslemma2dlem1a 15731 usgredg2vlem1 16014 usgredg2vlem2 16015 |
| Copyright terms: Public domain | W3C validator |