![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3expb | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1202 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3adant3r1 1212 3adant3r2 1213 3adant3r3 1214 3adant1l 1230 3adant1r 1231 mp3an1 1324 soinxp 4697 sotri 5025 fnfco 5391 mpoeq3dva 5939 fovcdmda 6018 ovelrn 6023 fnmpoovd 6216 nnmsucr 6489 fidifsnid 6871 exmidpw 6908 undiffi 6924 fidcenumlemim 6951 ltpopr 7594 ltexprlemdisj 7605 recexprlemdisj 7629 mul4 8089 add4 8118 2addsub 8171 addsubeq4 8172 subadd4 8201 muladd 8341 ltleadd 8403 divmulap 8632 divap0 8641 div23ap 8648 div12ap 8651 divsubdirap 8665 divcanap5 8671 divmuleqap 8674 divcanap6 8676 divdiv32ap 8677 div2subap 8794 letrp1 8805 lemul12b 8818 lediv1 8826 cju 8918 nndivre 8955 nndivtr 8961 nn0addge1 9222 nn0addge2 9223 peano2uz2 9360 uzind 9364 uzind3 9366 fzind 9368 fnn0ind 9369 uzind4 9588 qre 9625 irrmul 9647 rpdivcl 9679 rerpdivcl 9684 iccshftr 9994 iccshftl 9996 iccdil 9998 icccntr 10000 fzaddel 10059 fzrev 10084 frec2uzf1od 10406 expdivap 10571 2shfti 10840 iooinsup 11285 isermulc2 11348 dvds2add 11832 dvds2sub 11833 dvdstr 11835 alzdvds 11860 divalg2 11931 lcmgcdlem 12077 lcmgcdeq 12083 isprm6 12147 pcqcl 12306 mgmplusf 12785 grprinvd 12805 ismndd 12838 idmhm 12860 issubm2 12864 submid 12868 0mhm 12873 mhmco 12874 mhmima 12875 grpinvcnv 12938 grpinvnzcl 12942 grpsubf 12949 mhmfmhm 12981 mulgnnsubcl 12995 mulgnn0z 13010 mulgnndir 13012 issubg4m 13053 isnsg3 13067 nsgid 13075 srgfcl 13156 srgmulgass 13172 srglmhm 13176 srgrmhm 13177 opprringbg 13250 mulgass3 13254 issubrg2 13362 islmodd 13383 lmodscaf 13400 lcomf 13417 rmodislmodlem 13440 tgclb 13568 topbas 13570 neissex 13668 cnpnei 13722 txcnp 13774 psmetxrge0 13835 psmetlecl 13837 xmetlecl 13870 xmettpos 13873 elbl3ps 13897 elbl3 13898 metss 13997 comet 14002 bdxmet 14004 bdmet 14005 bl2ioo 14045 divcnap 14058 cncfcdm 14072 divccncfap 14080 dvrecap 14180 cosz12 14204 |
Copyright terms: Public domain | W3C validator |