Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3expb | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1202 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3adant3r1 1212 3adant3r2 1213 3adant3r3 1214 3adant1l 1230 3adant1r 1231 mp3an1 1324 soinxp 4690 sotri 5016 fnfco 5382 mpoeq3dva 5929 fovcdmda 6008 ovelrn 6013 fnmpoovd 6206 nnmsucr 6479 fidifsnid 6861 exmidpw 6898 undiffi 6914 fidcenumlemim 6941 ltpopr 7569 ltexprlemdisj 7580 recexprlemdisj 7604 mul4 8063 add4 8092 2addsub 8145 addsubeq4 8146 subadd4 8175 muladd 8315 ltleadd 8377 divmulap 8605 divap0 8614 div23ap 8621 div12ap 8624 divsubdirap 8638 divcanap5 8644 divmuleqap 8647 divcanap6 8649 divdiv32ap 8650 div2subap 8767 letrp1 8778 lemul12b 8791 lediv1 8799 cju 8891 nndivre 8928 nndivtr 8934 nn0addge1 9195 nn0addge2 9196 peano2uz2 9333 uzind 9337 uzind3 9339 fzind 9341 fnn0ind 9342 uzind4 9561 qre 9598 irrmul 9620 rpdivcl 9650 rerpdivcl 9655 iccshftr 9965 iccshftl 9967 iccdil 9969 icccntr 9971 fzaddel 10029 fzrev 10054 frec2uzf1od 10376 expdivap 10541 2shfti 10808 iooinsup 11253 isermulc2 11316 dvds2add 11800 dvds2sub 11801 dvdstr 11803 alzdvds 11827 divalg2 11898 lcmgcdlem 12044 lcmgcdeq 12050 isprm6 12114 pcqcl 12273 mgmplusf 12660 grprinvd 12680 ismndd 12713 idmhm 12732 submid 12739 0mhm 12744 mhmco 12745 mhmima 12746 grpinvcnv 12808 grpinvnzcl 12812 grpsubf 12819 mhmfmhm 12851 mulgnnsubcl 12865 mulgnn0z 12879 mulgnndir 12881 srgfcl 12962 srgmulgass 12978 srglmhm 12982 srgrmhm 12983 opprringbg 13054 mulgass3 13058 tgclb 13145 topbas 13147 neissex 13245 cnpnei 13299 txcnp 13351 psmetxrge0 13412 psmetlecl 13414 xmetlecl 13447 xmettpos 13450 elbl3ps 13474 elbl3 13475 metss 13574 comet 13579 bdxmet 13581 bdmet 13582 bl2ioo 13622 divcnap 13635 cncfcdm 13649 divccncfap 13657 dvrecap 13757 cosz12 13781 |
Copyright terms: Public domain | W3C validator |