| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1205 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant3r1 1215 3adant3r2 1216 3adant3r3 1217 3adant1l 1233 3adant1r 1234 mp3an1 1337 soinxp 4763 sotri 5097 fnfco 5472 mpoeq3dva 6032 fovcdmda 6113 ovelrn 6118 fnmpoovd 6324 nnmsucr 6597 fidifsnid 6994 exmidpw 7031 undiffi 7048 fidcenumlemim 7080 ltpopr 7743 ltexprlemdisj 7754 recexprlemdisj 7778 mul4 8239 add4 8268 2addsub 8321 addsubeq4 8322 subadd4 8351 muladd 8491 ltleadd 8554 divmulap 8783 divap0 8792 div23ap 8799 div12ap 8802 divsubdirap 8816 divcanap5 8822 divmuleqap 8825 divcanap6 8827 divdiv32ap 8828 div2subap 8945 letrp1 8956 lemul12b 8969 lediv1 8977 cju 9069 nndivre 9107 nndivtr 9113 nn0addge1 9376 nn0addge2 9377 peano2uz2 9515 uzind 9519 uzind3 9521 fzind 9523 fnn0ind 9524 uzind4 9744 qre 9781 irrmul 9803 rpdivcl 9836 rerpdivcl 9841 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 fzaddel 10216 fzrev 10241 frec2uzf1od 10588 expdivap 10772 fundm2domnop0 11027 swrdwrdsymbg 11155 ccatpfx 11192 swrdccat 11226 2shfti 11257 iooinsup 11703 isermulc2 11766 dvds2add 12251 dvds2sub 12252 dvdstr 12254 alzdvds 12280 divalg2 12352 lcmgcdlem 12514 lcmgcdeq 12520 isprm6 12584 pcqcl 12744 mgmplusf 13313 grpinva 13333 ismndd 13384 imasmnd2 13399 idmhm 13416 issubm2 13420 submid 13424 0mhm 13433 resmhm 13434 resmhm2 13435 resmhm2b 13436 mhmco 13437 mhmima 13438 gsumwsubmcl 13443 gsumwmhm 13445 grpinvcnv 13515 grpinvnzcl 13519 grpsubf 13526 imasgrp2 13561 qusgrp2 13564 mhmfmhm 13568 mulgnnsubcl 13585 mulgnn0z 13600 mulgnndir 13602 issubg4m 13644 isnsg3 13658 nsgid 13666 qusadd 13685 ghmmhm 13704 ghmmhmb 13705 idghm 13710 resghm 13711 ghmf1 13724 kerf1ghm 13725 qusghm 13733 ghmfghm 13777 invghm 13780 ablnsg 13785 srgfcl 13850 srgmulgass 13866 srglmhm 13870 srgrmhm 13871 ringlghm 13938 ringrghm 13939 opprringbg 13957 mulgass3 13962 isnzr2 14061 subrngringnsg 14082 issubrng2 14087 issubrg2 14118 domnmuln0 14150 islmodd 14170 lmodscaf 14187 lcomf 14204 rmodislmodlem 14227 issubrgd 14329 qusrhm 14405 qusmul2 14406 crngridl 14407 qusmulrng 14409 znidom 14534 psraddcl 14557 tgclb 14652 topbas 14654 neissex 14752 cnpnei 14806 txcnp 14858 psmetxrge0 14919 psmetlecl 14921 xmetlecl 14954 xmettpos 14957 elbl3ps 14981 elbl3 14982 metss 15081 comet 15086 bdxmet 15088 bdmet 15089 bl2ioo 15137 divcnap 15152 cncfcdm 15169 divccncfap 15177 dvrecap 15300 dvmptfsum 15312 cosz12 15367 gausslemma2dlem1a 15650 |
| Copyright terms: Public domain | W3C validator |