| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant3r1 1214 3adant3r2 1215 3adant3r3 1216 3adant1l 1232 3adant1r 1233 mp3an1 1335 soinxp 4733 sotri 5065 fnfco 5432 mpoeq3dva 5986 fovcdmda 6067 ovelrn 6072 fnmpoovd 6273 nnmsucr 6546 fidifsnid 6932 exmidpw 6969 undiffi 6986 fidcenumlemim 7018 ltpopr 7662 ltexprlemdisj 7673 recexprlemdisj 7697 mul4 8158 add4 8187 2addsub 8240 addsubeq4 8241 subadd4 8270 muladd 8410 ltleadd 8473 divmulap 8702 divap0 8711 div23ap 8718 div12ap 8721 divsubdirap 8735 divcanap5 8741 divmuleqap 8744 divcanap6 8746 divdiv32ap 8747 div2subap 8864 letrp1 8875 lemul12b 8888 lediv1 8896 cju 8988 nndivre 9026 nndivtr 9032 nn0addge1 9295 nn0addge2 9296 peano2uz2 9433 uzind 9437 uzind3 9439 fzind 9441 fnn0ind 9442 uzind4 9662 qre 9699 irrmul 9721 rpdivcl 9754 rerpdivcl 9759 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 fzaddel 10134 fzrev 10159 frec2uzf1od 10498 expdivap 10682 2shfti 10996 iooinsup 11442 isermulc2 11505 dvds2add 11990 dvds2sub 11991 dvdstr 11993 alzdvds 12019 divalg2 12091 lcmgcdlem 12245 lcmgcdeq 12251 isprm6 12315 pcqcl 12475 mgmplusf 13009 grpinva 13029 ismndd 13078 idmhm 13101 issubm2 13105 submid 13109 0mhm 13118 resmhm 13119 resmhm2 13120 resmhm2b 13121 mhmco 13122 mhmima 13123 gsumwsubmcl 13128 gsumwmhm 13130 grpinvcnv 13200 grpinvnzcl 13204 grpsubf 13211 imasgrp2 13240 qusgrp2 13243 mhmfmhm 13247 mulgnnsubcl 13264 mulgnn0z 13279 mulgnndir 13281 issubg4m 13323 isnsg3 13337 nsgid 13345 qusadd 13364 ghmmhm 13383 ghmmhmb 13384 idghm 13389 resghm 13390 ghmf1 13403 kerf1ghm 13404 qusghm 13412 ghmfghm 13456 invghm 13459 ablnsg 13464 srgfcl 13529 srgmulgass 13545 srglmhm 13549 srgrmhm 13550 ringlghm 13617 ringrghm 13618 opprringbg 13636 mulgass3 13641 isnzr2 13740 subrngringnsg 13761 issubrng2 13766 issubrg2 13797 domnmuln0 13829 islmodd 13849 lmodscaf 13866 lcomf 13883 rmodislmodlem 13906 issubrgd 14008 qusrhm 14084 qusmul2 14085 crngridl 14086 qusmulrng 14088 znidom 14213 psraddcl 14232 tgclb 14301 topbas 14303 neissex 14401 cnpnei 14455 txcnp 14507 psmetxrge0 14568 psmetlecl 14570 xmetlecl 14603 xmettpos 14606 elbl3ps 14630 elbl3 14631 metss 14730 comet 14735 bdxmet 14737 bdmet 14738 bl2ioo 14786 divcnap 14801 cncfcdm 14818 divccncfap 14826 dvrecap 14949 dvmptfsum 14961 cosz12 15016 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |