Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3expb | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1192 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 255 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3adant3r1 1202 3adant3r2 1203 3adant3r3 1204 3adant1l 1220 3adant1r 1221 mp3an1 1314 soinxp 4673 sotri 4998 fnfco 5361 mpoeq3dva 5902 fovrnda 5981 ovelrn 5986 grprinvd 6033 fnmpoovd 6179 nnmsucr 6452 fidifsnid 6833 exmidpw 6870 undiffi 6886 fidcenumlemim 6913 ltpopr 7532 ltexprlemdisj 7543 recexprlemdisj 7567 mul4 8026 add4 8055 2addsub 8108 addsubeq4 8109 subadd4 8138 muladd 8278 ltleadd 8340 divmulap 8567 divap0 8576 div23ap 8583 div12ap 8586 divsubdirap 8600 divcanap5 8606 divmuleqap 8609 divcanap6 8611 divdiv32ap 8612 div2subap 8729 letrp1 8739 lemul12b 8752 lediv1 8760 cju 8852 nndivre 8889 nndivtr 8895 nn0addge1 9156 nn0addge2 9157 peano2uz2 9294 uzind 9298 uzind3 9300 fzind 9302 fnn0ind 9303 uzind4 9522 qre 9559 irrmul 9581 rpdivcl 9611 rerpdivcl 9616 iccshftr 9926 iccshftl 9928 iccdil 9930 icccntr 9932 fzaddel 9990 fzrev 10015 frec2uzf1od 10337 expdivap 10502 2shfti 10769 iooinsup 11214 isermulc2 11277 dvds2add 11761 dvds2sub 11762 dvdstr 11764 alzdvds 11788 divalg2 11859 lcmgcdlem 12005 lcmgcdeq 12011 isprm6 12075 pcqcl 12234 tgclb 12665 topbas 12667 neissex 12765 cnpnei 12819 txcnp 12871 psmetxrge0 12932 psmetlecl 12934 xmetlecl 12967 xmettpos 12970 elbl3ps 12994 elbl3 12995 metss 13094 comet 13099 bdxmet 13101 bdmet 13102 bl2ioo 13142 divcnap 13155 cncffvrn 13169 divccncfap 13177 dvrecap 13277 cosz12 13301 |
Copyright terms: Public domain | W3C validator |