| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1205 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant3r1 1215 3adant3r2 1216 3adant3r3 1217 3adant1l 1233 3adant1r 1234 mp3an1 1337 soinxp 4745 sotri 5078 fnfco 5450 mpoeq3dva 6009 fovcdmda 6090 ovelrn 6095 fnmpoovd 6301 nnmsucr 6574 fidifsnid 6968 exmidpw 7005 undiffi 7022 fidcenumlemim 7054 ltpopr 7708 ltexprlemdisj 7719 recexprlemdisj 7743 mul4 8204 add4 8233 2addsub 8286 addsubeq4 8287 subadd4 8316 muladd 8456 ltleadd 8519 divmulap 8748 divap0 8757 div23ap 8764 div12ap 8767 divsubdirap 8781 divcanap5 8787 divmuleqap 8790 divcanap6 8792 divdiv32ap 8793 div2subap 8910 letrp1 8921 lemul12b 8934 lediv1 8942 cju 9034 nndivre 9072 nndivtr 9078 nn0addge1 9341 nn0addge2 9342 peano2uz2 9480 uzind 9484 uzind3 9486 fzind 9488 fnn0ind 9489 uzind4 9709 qre 9746 irrmul 9768 rpdivcl 9801 rerpdivcl 9806 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 fzaddel 10181 fzrev 10206 frec2uzf1od 10551 expdivap 10735 fundm2domnop0 10990 swrdwrdsymbg 11117 2shfti 11142 iooinsup 11588 isermulc2 11651 dvds2add 12136 dvds2sub 12137 dvdstr 12139 alzdvds 12165 divalg2 12237 lcmgcdlem 12399 lcmgcdeq 12405 isprm6 12469 pcqcl 12629 mgmplusf 13198 grpinva 13218 ismndd 13269 imasmnd2 13284 idmhm 13301 issubm2 13305 submid 13309 0mhm 13318 resmhm 13319 resmhm2 13320 resmhm2b 13321 mhmco 13322 mhmima 13323 gsumwsubmcl 13328 gsumwmhm 13330 grpinvcnv 13400 grpinvnzcl 13404 grpsubf 13411 imasgrp2 13446 qusgrp2 13449 mhmfmhm 13453 mulgnnsubcl 13470 mulgnn0z 13485 mulgnndir 13487 issubg4m 13529 isnsg3 13543 nsgid 13551 qusadd 13570 ghmmhm 13589 ghmmhmb 13590 idghm 13595 resghm 13596 ghmf1 13609 kerf1ghm 13610 qusghm 13618 ghmfghm 13662 invghm 13665 ablnsg 13670 srgfcl 13735 srgmulgass 13751 srglmhm 13755 srgrmhm 13756 ringlghm 13823 ringrghm 13824 opprringbg 13842 mulgass3 13847 isnzr2 13946 subrngringnsg 13967 issubrng2 13972 issubrg2 14003 domnmuln0 14035 islmodd 14055 lmodscaf 14072 lcomf 14089 rmodislmodlem 14112 issubrgd 14214 qusrhm 14290 qusmul2 14291 crngridl 14292 qusmulrng 14294 znidom 14419 psraddcl 14442 tgclb 14537 topbas 14539 neissex 14637 cnpnei 14691 txcnp 14743 psmetxrge0 14804 psmetlecl 14806 xmetlecl 14839 xmettpos 14842 elbl3ps 14866 elbl3 14867 metss 14966 comet 14971 bdxmet 14973 bdmet 14974 bl2ioo 15022 divcnap 15037 cncfcdm 15054 divccncfap 15062 dvrecap 15185 dvmptfsum 15197 cosz12 15252 gausslemma2dlem1a 15535 |
| Copyright terms: Public domain | W3C validator |