| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expb | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expb | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp32 257 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant3r1 1214 3adant3r2 1215 3adant3r3 1216 3adant1l 1232 3adant1r 1233 mp3an1 1335 soinxp 4734 sotri 5066 fnfco 5435 mpoeq3dva 5990 fovcdmda 6071 ovelrn 6076 fnmpoovd 6282 nnmsucr 6555 fidifsnid 6941 exmidpw 6978 undiffi 6995 fidcenumlemim 7027 ltpopr 7681 ltexprlemdisj 7692 recexprlemdisj 7716 mul4 8177 add4 8206 2addsub 8259 addsubeq4 8260 subadd4 8289 muladd 8429 ltleadd 8492 divmulap 8721 divap0 8730 div23ap 8737 div12ap 8740 divsubdirap 8754 divcanap5 8760 divmuleqap 8763 divcanap6 8765 divdiv32ap 8766 div2subap 8883 letrp1 8894 lemul12b 8907 lediv1 8915 cju 9007 nndivre 9045 nndivtr 9051 nn0addge1 9314 nn0addge2 9315 peano2uz2 9452 uzind 9456 uzind3 9458 fzind 9460 fnn0ind 9461 uzind4 9681 qre 9718 irrmul 9740 rpdivcl 9773 rerpdivcl 9778 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 fzaddel 10153 fzrev 10178 frec2uzf1od 10517 expdivap 10701 2shfti 11015 iooinsup 11461 isermulc2 11524 dvds2add 12009 dvds2sub 12010 dvdstr 12012 alzdvds 12038 divalg2 12110 lcmgcdlem 12272 lcmgcdeq 12278 isprm6 12342 pcqcl 12502 mgmplusf 13070 grpinva 13090 ismndd 13141 imasmnd2 13156 idmhm 13173 issubm2 13177 submid 13181 0mhm 13190 resmhm 13191 resmhm2 13192 resmhm2b 13193 mhmco 13194 mhmima 13195 gsumwsubmcl 13200 gsumwmhm 13202 grpinvcnv 13272 grpinvnzcl 13276 grpsubf 13283 imasgrp2 13318 qusgrp2 13321 mhmfmhm 13325 mulgnnsubcl 13342 mulgnn0z 13357 mulgnndir 13359 issubg4m 13401 isnsg3 13415 nsgid 13423 qusadd 13442 ghmmhm 13461 ghmmhmb 13462 idghm 13467 resghm 13468 ghmf1 13481 kerf1ghm 13482 qusghm 13490 ghmfghm 13534 invghm 13537 ablnsg 13542 srgfcl 13607 srgmulgass 13623 srglmhm 13627 srgrmhm 13628 ringlghm 13695 ringrghm 13696 opprringbg 13714 mulgass3 13719 isnzr2 13818 subrngringnsg 13839 issubrng2 13844 issubrg2 13875 domnmuln0 13907 islmodd 13927 lmodscaf 13944 lcomf 13961 rmodislmodlem 13984 issubrgd 14086 qusrhm 14162 qusmul2 14163 crngridl 14164 qusmulrng 14166 znidom 14291 psraddcl 14314 tgclb 14409 topbas 14411 neissex 14509 cnpnei 14563 txcnp 14615 psmetxrge0 14676 psmetlecl 14678 xmetlecl 14711 xmettpos 14714 elbl3ps 14738 elbl3 14739 metss 14838 comet 14843 bdxmet 14845 bdmet 14846 bl2ioo 14894 divcnap 14909 cncfcdm 14926 divccncfap 14934 dvrecap 15057 dvmptfsum 15069 cosz12 15124 gausslemma2dlem1a 15407 |
| Copyright terms: Public domain | W3C validator |