| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitrri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) |
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitrri | ⊢ (𝜃 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitr2i 185 | . 2 ⊢ (𝜒 ↔ 𝜑) |
| 5 | 1, 4 | bitr3i 186 | 1 ⊢ (𝜃 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sbralie 2755 reu8 2968 unass 3329 ssin 3394 difab 3441 iunss 3967 poirr 4352 cnvuni 4862 dfco2 5179 dff1o6 5835 elznn0 9369 bj-ssom 15736 |
| Copyright terms: Public domain | W3C validator |