| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitrri | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) | 
| Ref | Expression | 
|---|---|
| 3bitri.1 | ⊢ (𝜑 ↔ 𝜓) | 
| 3bitri.2 | ⊢ (𝜓 ↔ 𝜒) | 
| 3bitri.3 | ⊢ (𝜒 ↔ 𝜃) | 
| Ref | Expression | 
|---|---|
| 3bitrri | ⊢ (𝜃 ↔ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitri.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 3bitri.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitri.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 4 | 2, 3 | bitr2i 185 | . 2 ⊢ (𝜒 ↔ 𝜑) | 
| 5 | 1, 4 | bitr3i 186 | 1 ⊢ (𝜃 ↔ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sbralie 2747 reu8 2960 unass 3320 ssin 3385 difab 3432 iunss 3957 poirr 4342 cnvuni 4852 dfco2 5169 dff1o6 5823 elznn0 9341 bj-ssom 15582 | 
| Copyright terms: Public domain | W3C validator |