ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unass GIF version

Theorem unass 3338
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unass ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))

Proof of Theorem unass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 3322 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
2 elun 3322 . . . 4 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32orbi2i 764 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
4 elun 3322 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
54orbi1i 765 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∨ 𝑥𝐶))
6 orass 769 . . . 4 (((𝑥𝐴𝑥𝐵) ∨ 𝑥𝐶) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
75, 6bitr2i 185 . . 3 ((𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶))
81, 3, 73bitrri 207 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∪ (𝐵𝐶)))
98uneqri 3323 1 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wo 710   = wceq 1373  wcel 2178  cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by:  un12  3339  un23  3340  un4  3341  qdass  3740  qdassr  3741  rdgisucinc  6494  oasuc  6573  unfidisj  7045  undifdc  7047  djuassen  7360  fzosplitprm1  10400  hashunlem  10986  prdsvalstrd  13218  plyun0  15323
  Copyright terms: Public domain W3C validator