ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvuni GIF version

Theorem cnvuni 4733
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvuni
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 4725 . . . 4 (𝑦 𝐴 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴))
2 eluni2 3748 . . . . . . 7 (⟨𝑤, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥)
32anbi2i 453 . . . . . 6 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
4 r19.42v 2591 . . . . . 6 (∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
53, 4bitr4i 186 . . . . 5 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
652exbii 1586 . . . 4 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
7 elcnv2 4725 . . . . . 6 (𝑦𝑥 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
87rexbii 2445 . . . . 5 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
9 rexcom4 2712 . . . . 5 (∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
10 rexcom4 2712 . . . . . 6 (∃𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
1110exbii 1585 . . . . 5 (∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
128, 9, 113bitrri 206 . . . 4 (∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑥𝐴 𝑦𝑥)
131, 6, 123bitri 205 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
14 eliun 3825 . . 3 (𝑦 𝑥𝐴 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
1513, 14bitr4i 186 . 2 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
1615eqriv 2137 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1332  wex 1469  wcel 1481  wrex 2418  cop 3535   cuni 3744   ciun 3821  ccnv 4546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-cnv 4555
This theorem is referenced by:  funcnvuni  5200
  Copyright terms: Public domain W3C validator