ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvuni GIF version

Theorem cnvuni 4865
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvuni
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 4857 . . . 4 (𝑦 𝐴 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴))
2 eluni2 3854 . . . . . . 7 (⟨𝑤, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥)
32anbi2i 457 . . . . . 6 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
4 r19.42v 2663 . . . . . 6 (∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
53, 4bitr4i 187 . . . . 5 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
652exbii 1629 . . . 4 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
7 elcnv2 4857 . . . . . 6 (𝑦𝑥 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
87rexbii 2513 . . . . 5 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
9 rexcom4 2795 . . . . 5 (∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
10 rexcom4 2795 . . . . . 6 (∃𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
1110exbii 1628 . . . . 5 (∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
128, 9, 113bitrri 207 . . . 4 (∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑥𝐴 𝑦𝑥)
131, 6, 123bitri 206 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
14 eliun 3931 . . 3 (𝑦 𝑥𝐴 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
1513, 14bitr4i 187 . 2 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
1615eqriv 2202 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wex 1515  wcel 2176  wrex 2485  cop 3636   cuni 3850   ciun 3927  ccnv 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-cnv 4684
This theorem is referenced by:  funcnvuni  5344
  Copyright terms: Public domain W3C validator