Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff1o6 | GIF version |
Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.) |
Ref | Expression |
---|---|
dff1o6 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 5195 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | dff13 5736 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
3 | df-fo 5194 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | 2, 3 | anbi12i 456 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) |
5 | df-3an 970 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
6 | eqimss 3196 | . . . . . . 7 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
7 | 6 | anim2i 340 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
8 | df-f 5192 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
9 | 7, 8 | sylibr 133 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴⟶𝐵) |
10 | 9 | pm4.71ri 390 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) |
11 | 10 | anbi1i 454 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹:𝐴⟶𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
12 | an32 552 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) | |
13 | 5, 11, 12 | 3bitrri 206 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
14 | 1, 4, 13 | 3bitri 205 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∀wral 2444 ⊆ wss 3116 ran crn 4605 Fn wfn 5183 ⟶wf 5184 –1-1→wf1 5185 –onto→wfo 5186 –1-1-onto→wf1o 5187 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: ennnfonelemim 12357 |
Copyright terms: Public domain | W3C validator |