ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o6 GIF version

Theorem dff1o6 5744
Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
dff1o6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff1o6
StepHypRef Expression
1 df-f1o 5195 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 dff13 5736 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3 df-fo 5194 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
42, 3anbi12i 456 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
5 df-3an 970 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6 eqimss 3196 . . . . . . 7 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
76anim2i 340 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 5192 . . . . . 6 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
97, 8sylibr 133 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
109pm4.71ri 390 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ↔ (𝐹:𝐴𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
1110anbi1i 454 . . 3 (((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹:𝐴𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
12 an32 552 . . 3 (((𝐹:𝐴𝐵 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
135, 11, 123bitrri 206 . 2 (((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
141, 4, 133bitri 205 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wral 2444  wss 3116  ran crn 4605   Fn wfn 5183  wf 5184  1-1wf1 5185  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  ennnfonelemim  12357
  Copyright terms: Public domain W3C validator