| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-ssom | GIF version | ||
| Description: A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ssom | ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 3890 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦} ↔ ∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴 ⊆ 𝑥) | |
| 2 | df-ral 2480 | . . 3 ⊢ (∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴 ⊆ 𝑥 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥)) | |
| 3 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | bj-indeq 15575 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (Ind 𝑦 ↔ Ind 𝑥)) | |
| 5 | 3, 4 | elab 2908 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ Ind 𝑦} ↔ Ind 𝑥) |
| 6 | 5 | imbi1i 238 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥) ↔ (Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
| 7 | 6 | albii 1484 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
| 8 | 1, 2, 7 | 3bitrri 207 | . 2 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦}) |
| 9 | bj-dfom 15579 | . . . 4 ⊢ ω = ∩ {𝑦 ∣ Ind 𝑦} | |
| 10 | 9 | eqcomi 2200 | . . 3 ⊢ ∩ {𝑦 ∣ Ind 𝑦} = ω |
| 11 | 10 | sseq2i 3210 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦} ↔ 𝐴 ⊆ ω) |
| 12 | 8, 11 | bitri 184 | 1 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2167 {cab 2182 ∀wral 2475 ⊆ wss 3157 ∩ cint 3874 ωcom 4626 Ind wind 15572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-iom 4627 df-bj-ind 15573 |
| This theorem is referenced by: bj-om 15583 |
| Copyright terms: Public domain | W3C validator |