![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-ssom | GIF version |
Description: A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ssom | ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 3886 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦} ↔ ∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴 ⊆ 𝑥) | |
2 | df-ral 2477 | . . 3 ⊢ (∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴 ⊆ 𝑥 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥)) | |
3 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | bj-indeq 15421 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (Ind 𝑦 ↔ Ind 𝑥)) | |
5 | 3, 4 | elab 2904 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ Ind 𝑦} ↔ Ind 𝑥) |
6 | 5 | imbi1i 238 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥) ↔ (Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
7 | 6 | albii 1481 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
8 | 1, 2, 7 | 3bitrri 207 | . 2 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦}) |
9 | bj-dfom 15425 | . . . 4 ⊢ ω = ∩ {𝑦 ∣ Ind 𝑦} | |
10 | 9 | eqcomi 2197 | . . 3 ⊢ ∩ {𝑦 ∣ Ind 𝑦} = ω |
11 | 10 | sseq2i 3206 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦} ↔ 𝐴 ⊆ ω) |
12 | 8, 11 | bitri 184 | 1 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2164 {cab 2179 ∀wral 2472 ⊆ wss 3153 ∩ cint 3870 ωcom 4622 Ind wind 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-int 3871 df-iom 4623 df-bj-ind 15419 |
This theorem is referenced by: bj-om 15429 |
Copyright terms: Public domain | W3C validator |