Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ssom GIF version

Theorem bj-ssom 15428
Description: A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ssom (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-ssom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 3886 . . 3 (𝐴 {𝑦 ∣ Ind 𝑦} ↔ ∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴𝑥)
2 df-ral 2477 . . 3 (∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴𝑥 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴𝑥))
3 vex 2763 . . . . . 6 𝑥 ∈ V
4 bj-indeq 15421 . . . . . 6 (𝑦 = 𝑥 → (Ind 𝑦 ↔ Ind 𝑥))
53, 4elab 2904 . . . . 5 (𝑥 ∈ {𝑦 ∣ Ind 𝑦} ↔ Ind 𝑥)
65imbi1i 238 . . . 4 ((𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴𝑥) ↔ (Ind 𝑥𝐴𝑥))
76albii 1481 . . 3 (∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴𝑥) ↔ ∀𝑥(Ind 𝑥𝐴𝑥))
81, 2, 73bitrri 207 . 2 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 {𝑦 ∣ Ind 𝑦})
9 bj-dfom 15425 . . . 4 ω = {𝑦 ∣ Ind 𝑦}
109eqcomi 2197 . . 3 {𝑦 ∣ Ind 𝑦} = ω
1110sseq2i 3206 . 2 (𝐴 {𝑦 ∣ Ind 𝑦} ↔ 𝐴 ⊆ ω)
128, 11bitri 184 1 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wcel 2164  {cab 2179  wral 2472  wss 3153   cint 3870  ωcom 4622  Ind wind 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-int 3871  df-iom 4623  df-bj-ind 15419
This theorem is referenced by:  bj-om  15429
  Copyright terms: Public domain W3C validator