![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-ssom | GIF version |
Description: A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ssom | ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 3753 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦} ↔ ∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴 ⊆ 𝑥) | |
2 | df-ral 2395 | . . 3 ⊢ (∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴 ⊆ 𝑥 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥)) | |
3 | vex 2660 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | bj-indeq 12819 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (Ind 𝑦 ↔ Ind 𝑥)) | |
5 | 3, 4 | elab 2798 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ Ind 𝑦} ↔ Ind 𝑥) |
6 | 5 | imbi1i 237 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥) ↔ (Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
7 | 6 | albii 1429 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)) |
8 | 1, 2, 7 | 3bitrri 206 | . 2 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦}) |
9 | bj-dfom 12823 | . . . 4 ⊢ ω = ∩ {𝑦 ∣ Ind 𝑦} | |
10 | 9 | eqcomi 2119 | . . 3 ⊢ ∩ {𝑦 ∣ Ind 𝑦} = ω |
11 | 10 | sseq2i 3090 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑦 ∣ Ind 𝑦} ↔ 𝐴 ⊆ ω) |
12 | 8, 11 | bitri 183 | 1 ⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1312 ∈ wcel 1463 {cab 2101 ∀wral 2390 ⊆ wss 3037 ∩ cint 3737 ωcom 4464 Ind wind 12816 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-v 2659 df-in 3043 df-ss 3050 df-int 3738 df-iom 4465 df-bj-ind 12817 |
This theorem is referenced by: bj-om 12827 |
Copyright terms: Public domain | W3C validator |