| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbralie | GIF version | ||
| Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbralie.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbralie | ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsv 2753 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 𝜓 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓) | |
| 2 | 1 | sbbii 1787 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓) |
| 3 | nfv 1550 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓 | |
| 4 | raleq 2701 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓)) | |
| 5 | 3, 4 | sbie 1813 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓) |
| 6 | cbvralsv 2753 | . . 3 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓) | |
| 7 | nfv 1550 | . . . . . 6 ⊢ Ⅎ𝑧𝜓 | |
| 8 | 7 | sbco2 1992 | . . . . 5 ⊢ ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ [𝑥 / 𝑦]𝜓) |
| 9 | nfv 1550 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 10 | sbralie.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 10 | bicomd 141 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
| 12 | 11 | equcoms 1730 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 13 | 9, 12 | sbie 1813 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) |
| 14 | 8, 13 | bitri 184 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ 𝜑) |
| 15 | 14 | ralbii 2511 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝑦 𝜑) |
| 16 | 6, 15 | bitri 184 | . 2 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝑦 𝜑) |
| 17 | 2, 5, 16 | 3bitrri 207 | 1 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 [wsb 1784 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |