ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbralie GIF version

Theorem sbralie 2604
Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
Hypothesis
Ref Expression
sbralie.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbralie ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ ∀𝑦𝑥 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem sbralie
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2602 . . . 4 (∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
21sbbii 1696 . . 3 ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ [𝑥 / 𝑦]∀𝑧𝑦 [𝑧 / 𝑥]𝜑)
3 nfv 1467 . . . 4 𝑦𝑧𝑥 [𝑧 / 𝑥]𝜑
4 raleq 2563 . . . 4 (𝑦 = 𝑥 → (∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑))
53, 4sbie 1722 . . 3 ([𝑥 / 𝑦]∀𝑧𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
62, 5bitri 183 . 2 ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
7 cbvralsv 2602 . . 3 (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)
8 nfv 1467 . . . . . 6 𝑧𝜑
98sbco2 1888 . . . . 5 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
10 nfv 1467 . . . . . 6 𝑥𝜓
11 sbralie.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
1210, 11sbie 1722 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
139, 12bitri 183 . . . 4 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑𝜓)
1413ralbii 2385 . . 3 (∀𝑦𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
157, 14bitri 183 . 2 (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝑥 𝜓)
166, 15bitri 183 1 ([𝑥 / 𝑦]∀𝑥𝑦 𝜑 ↔ ∀𝑦𝑥 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  [wsb 1693  wral 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator