| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbralie | GIF version | ||
| Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) | 
| Ref | Expression | 
|---|---|
| sbralie.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| sbralie | ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvralsv 2745 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 𝜓 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓) | |
| 2 | 1 | sbbii 1779 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓 ↔ [𝑦 / 𝑥]∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓) | 
| 3 | nfv 1542 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓 | |
| 4 | raleq 2693 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓)) | |
| 5 | 3, 4 | sbie 1805 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑧 ∈ 𝑥 [𝑧 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓) | 
| 6 | cbvralsv 2745 | . . 3 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓) | |
| 7 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑧𝜓 | |
| 8 | 7 | sbco2 1984 | . . . . 5 ⊢ ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ [𝑥 / 𝑦]𝜓) | 
| 9 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 10 | sbralie.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 10 | bicomd 141 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) | 
| 12 | 11 | equcoms 1722 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) | 
| 13 | 9, 12 | sbie 1805 | . . . . 5 ⊢ ([𝑥 / 𝑦]𝜓 ↔ 𝜑) | 
| 14 | 8, 13 | bitri 184 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ 𝜑) | 
| 15 | 14 | ralbii 2503 | . . 3 ⊢ (∀𝑥 ∈ 𝑦 [𝑥 / 𝑧][𝑧 / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝑦 𝜑) | 
| 16 | 6, 15 | bitri 184 | . 2 ⊢ (∀𝑧 ∈ 𝑦 [𝑧 / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝑦 𝜑) | 
| 17 | 2, 5, 16 | 3bitrri 207 | 1 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 [wsb 1776 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |