ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfco2 GIF version

Theorem dfco2 5179
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
dfco2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfco2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5178 . 2 Rel (𝐴𝐵)
2 reliun 4794 . . 3 (Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∀𝑥 ∈ V Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
3 relxp 4782 . . . 4 Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
43a1i 9 . . 3 (𝑥 ∈ V → Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
52, 4mprgbir 2563 . 2 Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
6 vex 2774 . . . 4 𝑦 ∈ V
7 vex 2774 . . . 4 𝑧 ∈ V
8 opelco2g 4844 . . . 4 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)))
96, 7, 8mp2an 426 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
10 eliun 3930 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
11 rexv 2789 . . . 4 (∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
12 opelxp 4703 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})))
13 vex 2774 . . . . . . . . 9 𝑥 ∈ V
1413, 6elimasn 5046 . . . . . . . 8 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
1513, 6opelcnv 4858 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1614, 15bitri 184 . . . . . . 7 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1713, 7elimasn 5046 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
1816, 17anbi12i 460 . . . . . 6 ((𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
1912, 18bitri 184 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
2019exbii 1627 . . . 4 (∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
2110, 11, 203bitrri 207 . . 3 (∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
229, 21bitri 184 . 2 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
231, 5, 22eqrelriiv 4767 1 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  wrex 2484  Vcvv 2771  {csn 3632  cop 3635   ciun 3926   × cxp 4671  ccnv 4672  cima 4676  ccom 4677  Rel wrel 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-iun 3928  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686
This theorem is referenced by:  dfco2a  5180
  Copyright terms: Public domain W3C validator