| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > a16g | GIF version | ||
| Description: A generalization of Axiom ax-16 1828. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| a16g | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aev 1826 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥) | |
| 2 | ax16 1827 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | |
| 3 | biidd 172 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (𝜑 ↔ 𝜑)) | |
| 4 | 3 | dral1 1744 | . . 3 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 ↔ ∀𝑥𝜑)) | 
| 5 | 4 | biimprd 158 | . 2 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑥𝜑 → ∀𝑧𝜑)) | 
| 6 | 1, 2, 5 | sylsyld 58 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: a16gb 1879 a16nf 1880 | 
| Copyright terms: Public domain | W3C validator |