ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a16g GIF version

Theorem a16g 1862
Description: A generalization of Axiom ax-16 1812. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
a16g (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem a16g
StepHypRef Expression
1 aev 1810 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥)
2 ax16 1811 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
3 biidd 172 . . . 4 (∀𝑧 𝑧 = 𝑥 → (𝜑𝜑))
43dral1 1728 . . 3 (∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 ↔ ∀𝑥𝜑))
54biimprd 158 . 2 (∀𝑧 𝑧 = 𝑥 → (∀𝑥𝜑 → ∀𝑧𝜑))
61, 2, 5sylsyld 58 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761
This theorem is referenced by:  a16gb  1863  a16nf  1864
  Copyright terms: Public domain W3C validator