ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptt GIF version

Theorem fvmptt 5587
Description: Closed theorem form of fvmpt 5573. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fvmptt ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptt
StepHypRef Expression
1 simp2 993 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → 𝐹 = (𝑥𝐷𝐵))
21fveq1d 5498 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 risset 2498 . . . . 5 (𝐴𝐷 ↔ ∃𝑥𝐷 𝑥 = 𝐴)
4 elex 2741 . . . . . 6 (𝐶𝑉𝐶 ∈ V)
5 nfa1 1534 . . . . . . 7 𝑥𝑥(𝑥 = 𝐴𝐵 = 𝐶)
6 nfv 1521 . . . . . . . 8 𝑥 𝐶 ∈ V
7 nffvmpt1 5507 . . . . . . . . 9 𝑥((𝑥𝐷𝐵)‘𝐴)
87nfeq1 2322 . . . . . . . 8 𝑥((𝑥𝐷𝐵)‘𝐴) = 𝐶
96, 8nfim 1565 . . . . . . 7 𝑥(𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
10 simprl 526 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥𝐷)
11 simplr 525 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 = 𝐶)
12 simprr 527 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐶 ∈ V)
1311, 12eqeltrd 2247 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 ∈ V)
14 eqid 2170 . . . . . . . . . . . . . 14 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1514fvmpt2 5579 . . . . . . . . . . . . 13 ((𝑥𝐷𝐵 ∈ V) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
1610, 13, 15syl2anc 409 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
17 simpll 524 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥 = 𝐴)
1817fveq2d 5500 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = ((𝑥𝐷𝐵)‘𝐴))
1916, 18, 113eqtr3d 2211 . . . . . . . . . . 11 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
2019exp43 370 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐵 = 𝐶 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2120a2i 11 . . . . . . . . 9 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥 = 𝐴 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2221com23 78 . . . . . . . 8 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2322sps 1530 . . . . . . 7 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
245, 9, 23rexlimd 2584 . . . . . 6 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
254, 24syl7 69 . . . . 5 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
263, 25syl5bi 151 . . . 4 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝐴𝐷 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
2726imp32 255 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
28273adant2 1011 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
292, 28eqtrd 2203 1 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973  wal 1346   = wceq 1348  wcel 2141  wrex 2449  Vcvv 2730  cmpt 4050  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator