Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptt GIF version

Theorem fvmptt 5515
 Description: Closed theorem form of fvmpt 5501. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fvmptt ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptt
StepHypRef Expression
1 simp2 982 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → 𝐹 = (𝑥𝐷𝐵))
21fveq1d 5426 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 risset 2463 . . . . 5 (𝐴𝐷 ↔ ∃𝑥𝐷 𝑥 = 𝐴)
4 elex 2697 . . . . . 6 (𝐶𝑉𝐶 ∈ V)
5 nfa1 1521 . . . . . . 7 𝑥𝑥(𝑥 = 𝐴𝐵 = 𝐶)
6 nfv 1508 . . . . . . . 8 𝑥 𝐶 ∈ V
7 nffvmpt1 5435 . . . . . . . . 9 𝑥((𝑥𝐷𝐵)‘𝐴)
87nfeq1 2291 . . . . . . . 8 𝑥((𝑥𝐷𝐵)‘𝐴) = 𝐶
96, 8nfim 1551 . . . . . . 7 𝑥(𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
10 simprl 520 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥𝐷)
11 simplr 519 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 = 𝐶)
12 simprr 521 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐶 ∈ V)
1311, 12eqeltrd 2216 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 ∈ V)
14 eqid 2139 . . . . . . . . . . . . . 14 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1514fvmpt2 5507 . . . . . . . . . . . . 13 ((𝑥𝐷𝐵 ∈ V) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
1610, 13, 15syl2anc 408 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
17 simpll 518 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥 = 𝐴)
1817fveq2d 5428 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = ((𝑥𝐷𝐵)‘𝐴))
1916, 18, 113eqtr3d 2180 . . . . . . . . . . 11 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
2019exp43 369 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐵 = 𝐶 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2120a2i 11 . . . . . . . . 9 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥 = 𝐴 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2221com23 78 . . . . . . . 8 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2322sps 1517 . . . . . . 7 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
245, 9, 23rexlimd 2546 . . . . . 6 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
254, 24syl7 69 . . . . 5 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
263, 25syl5bi 151 . . . 4 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝐴𝐷 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
2726imp32 255 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
28273adant2 1000 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
292, 28eqtrd 2172 1 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 962  ∀wal 1329   = wceq 1331   ∈ wcel 1480  ∃wrex 2417  Vcvv 2686   ↦ cmpt 3992  ‘cfv 5126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-iota 5091  df-fun 5128  df-fv 5134 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator