ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptt GIF version

Theorem fvmptt 5466
Description: Closed theorem form of fvmpt 5452. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fvmptt ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptt
StepHypRef Expression
1 simp2 965 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → 𝐹 = (𝑥𝐷𝐵))
21fveq1d 5377 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 risset 2437 . . . . 5 (𝐴𝐷 ↔ ∃𝑥𝐷 𝑥 = 𝐴)
4 elex 2668 . . . . . 6 (𝐶𝑉𝐶 ∈ V)
5 nfa1 1504 . . . . . . 7 𝑥𝑥(𝑥 = 𝐴𝐵 = 𝐶)
6 nfv 1491 . . . . . . . 8 𝑥 𝐶 ∈ V
7 nffvmpt1 5386 . . . . . . . . 9 𝑥((𝑥𝐷𝐵)‘𝐴)
87nfeq1 2265 . . . . . . . 8 𝑥((𝑥𝐷𝐵)‘𝐴) = 𝐶
96, 8nfim 1534 . . . . . . 7 𝑥(𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
10 simprl 503 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥𝐷)
11 simplr 502 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 = 𝐶)
12 simprr 504 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐶 ∈ V)
1311, 12eqeltrd 2191 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 ∈ V)
14 eqid 2115 . . . . . . . . . . . . . 14 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1514fvmpt2 5458 . . . . . . . . . . . . 13 ((𝑥𝐷𝐵 ∈ V) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
1610, 13, 15syl2anc 406 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
17 simpll 501 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥 = 𝐴)
1817fveq2d 5379 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = ((𝑥𝐷𝐵)‘𝐴))
1916, 18, 113eqtr3d 2155 . . . . . . . . . . 11 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
2019exp43 367 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐵 = 𝐶 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2120a2i 11 . . . . . . . . 9 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥 = 𝐴 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2221com23 78 . . . . . . . 8 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2322sps 1500 . . . . . . 7 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
245, 9, 23rexlimd 2520 . . . . . 6 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
254, 24syl7 69 . . . . 5 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
263, 25syl5bi 151 . . . 4 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝐴𝐷 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
2726imp32 255 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
28273adant2 983 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
292, 28eqtrd 2147 1 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945  wal 1312   = wceq 1314  wcel 1463  wrex 2391  Vcvv 2657  cmpt 3949  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator