| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsalg | GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| ceqsalg.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsalg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsalg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2787 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | nfa1 1565 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝐴 → 𝜑) | |
| 3 | ceqsalg.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | ceqsalg.2 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | biimpd 144 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| 6 | 5 | a2i 11 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
| 7 | 6 | sps 1561 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
| 8 | 2, 3, 7 | exlimd 1621 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 9 | 1, 8 | syl5com 29 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) |
| 10 | 4 | biimprcd 160 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 11 | 3, 10 | alrimi 1546 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 12 | 9, 11 | impbid1 142 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: ceqsal 2802 sbc6g 3024 uniiunlem 3283 sucprcreg 4601 funimass4 5636 ralrnmpo 6067 |
| Copyright terms: Public domain | W3C validator |