ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsalg GIF version

Theorem ceqsalg 2788
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
ceqsalg.1 𝑥𝜓
ceqsalg.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalg (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsalg
StepHypRef Expression
1 elisset 2774 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 nfa1 1552 . . . 4 𝑥𝑥(𝑥 = 𝐴𝜑)
3 ceqsalg.1 . . . 4 𝑥𝜓
4 ceqsalg.2 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
54biimpd 144 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
65a2i 11 . . . . 5 ((𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓))
76sps 1548 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓))
82, 3, 7exlimd 1608 . . 3 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴𝜓))
91, 8syl5com 29 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜓))
104biimprcd 160 . . 3 (𝜓 → (𝑥 = 𝐴𝜑))
113, 10alrimi 1533 . 2 (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))
129, 11impbid1 142 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wnf 1471  wex 1503  wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  ceqsal  2789  sbc6g  3010  uniiunlem  3268  sucprcreg  4581  funimass4  5607  ralrnmpo  6033
  Copyright terms: Public domain W3C validator