Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsalg | GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
ceqsalg.1 | ⊢ Ⅎ𝑥𝜓 |
ceqsalg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalg | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2740 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | nfa1 1529 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝐴 → 𝜑) | |
3 | ceqsalg.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | ceqsalg.2 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | biimpd 143 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
6 | 5 | a2i 11 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
7 | 6 | sps 1525 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
8 | 2, 3, 7 | exlimd 1585 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
9 | 1, 8 | syl5com 29 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) |
10 | 4 | biimprcd 159 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
11 | 3, 10 | alrimi 1510 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
12 | 9, 11 | impbid1 141 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: ceqsal 2755 sbc6g 2975 uniiunlem 3231 sucprcreg 4526 funimass4 5537 ralrnmpo 5956 |
Copyright terms: Public domain | W3C validator |