ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 GIF version

Theorem addid0 8487
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))

Proof of Theorem addid0
StepHypRef Expression
1 simpl 109 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ)
2 simpr 110 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ)
31, 1, 2subaddd 8443 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋))
4 eqcom 2211 . . . . 5 ((𝑋𝑋) = 𝑌𝑌 = (𝑋𝑋))
5 simpr 110 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = (𝑋𝑋))
6 subid 8333 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋𝑋) = 0)
76adantr 276 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → (𝑋𝑋) = 0)
85, 7eqtrd 2242 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = 0)
98ex 115 . . . . 5 (𝑋 ∈ ℂ → (𝑌 = (𝑋𝑋) → 𝑌 = 0))
104, 9biimtrid 152 . . . 4 (𝑋 ∈ ℂ → ((𝑋𝑋) = 𝑌𝑌 = 0))
1110adantr 276 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌𝑌 = 0))
123, 11sylbird 170 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
13 oveq2 5982 . . . . 5 (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0))
14 addrid 8252 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
1513, 14sylan9eqr 2264 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋)
1615ex 115 . . 3 (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1716adantr 276 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1812, 17impbid 129 1 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  (class class class)co 5974  cc 7965  0cc0 7967   + caddc 7970  cmin 8285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-setind 4606  ax-resscn 8059  ax-1cn 8060  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-sub 8287
This theorem is referenced by:  addn0nid  8488
  Copyright terms: Public domain W3C validator