![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid0 | GIF version |
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.) |
Ref | Expression |
---|---|
addid0 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ) | |
2 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ) | |
3 | 1, 1, 2 | subaddd 8288 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋)) |
4 | eqcom 2179 | . . . . 5 ⊢ ((𝑋 − 𝑋) = 𝑌 ↔ 𝑌 = (𝑋 − 𝑋)) | |
5 | simpr 110 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = (𝑋 − 𝑋)) | |
6 | subid 8178 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (𝑋 − 𝑋) = 0) | |
7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → (𝑋 − 𝑋) = 0) |
8 | 5, 7 | eqtrd 2210 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = 0) |
9 | 8 | ex 115 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑌 = (𝑋 − 𝑋) → 𝑌 = 0)) |
10 | 4, 9 | biimtrid 152 | . . . 4 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
11 | 10 | adantr 276 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
12 | 3, 11 | sylbird 170 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 → 𝑌 = 0)) |
13 | oveq2 5885 | . . . . 5 ⊢ (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0)) | |
14 | addid1 8097 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) | |
15 | 13, 14 | sylan9eqr 2232 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋) |
16 | 15 | ex 115 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
17 | 16 | adantr 276 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
18 | 12, 17 | impbid 129 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 0cc0 7813 + caddc 7816 − cmin 8130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 |
This theorem is referenced by: addn0nid 8333 |
Copyright terms: Public domain | W3C validator |