| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addid0 | GIF version | ||
| Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.) |
| Ref | Expression |
|---|---|
| addid0 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ) | |
| 2 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ) | |
| 3 | 1, 1, 2 | subaddd 8355 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋)) |
| 4 | eqcom 2198 | . . . . 5 ⊢ ((𝑋 − 𝑋) = 𝑌 ↔ 𝑌 = (𝑋 − 𝑋)) | |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = (𝑋 − 𝑋)) | |
| 6 | subid 8245 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (𝑋 − 𝑋) = 0) | |
| 7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → (𝑋 − 𝑋) = 0) |
| 8 | 5, 7 | eqtrd 2229 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = 0) |
| 9 | 8 | ex 115 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑌 = (𝑋 − 𝑋) → 𝑌 = 0)) |
| 10 | 4, 9 | biimtrid 152 | . . . 4 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
| 11 | 10 | adantr 276 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
| 12 | 3, 11 | sylbird 170 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 → 𝑌 = 0)) |
| 13 | oveq2 5930 | . . . . 5 ⊢ (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0)) | |
| 14 | addrid 8164 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) | |
| 15 | 13, 14 | sylan9eqr 2251 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋) |
| 16 | 15 | ex 115 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
| 17 | 16 | adantr 276 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
| 18 | 12, 17 | impbid 129 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 − cmin 8197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 |
| This theorem is referenced by: addn0nid 8400 |
| Copyright terms: Public domain | W3C validator |