ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 GIF version

Theorem addid0 8002
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))

Proof of Theorem addid0
StepHypRef Expression
1 simpl 108 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ)
2 simpr 109 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ)
31, 1, 2subaddd 7962 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋))
4 eqcom 2102 . . . . 5 ((𝑋𝑋) = 𝑌𝑌 = (𝑋𝑋))
5 simpr 109 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = (𝑋𝑋))
6 subid 7852 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋𝑋) = 0)
76adantr 272 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → (𝑋𝑋) = 0)
85, 7eqtrd 2132 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = 0)
98ex 114 . . . . 5 (𝑋 ∈ ℂ → (𝑌 = (𝑋𝑋) → 𝑌 = 0))
104, 9syl5bi 151 . . . 4 (𝑋 ∈ ℂ → ((𝑋𝑋) = 𝑌𝑌 = 0))
1110adantr 272 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌𝑌 = 0))
123, 11sylbird 169 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
13 oveq2 5714 . . . . 5 (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0))
14 addid1 7771 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
1513, 14sylan9eqr 2154 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋)
1615ex 114 . . 3 (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1716adantr 272 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1812, 17impbid 128 1 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  (class class class)co 5706  cc 7498  0cc0 7500   + caddc 7503  cmin 7804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-setind 4390  ax-resscn 7587  ax-1cn 7588  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-sub 7806
This theorem is referenced by:  addn0nid  8003
  Copyright terms: Public domain W3C validator