ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 GIF version

Theorem addid0 8527
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))

Proof of Theorem addid0
StepHypRef Expression
1 simpl 109 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ)
2 simpr 110 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ)
31, 1, 2subaddd 8483 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋))
4 eqcom 2231 . . . . 5 ((𝑋𝑋) = 𝑌𝑌 = (𝑋𝑋))
5 simpr 110 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = (𝑋𝑋))
6 subid 8373 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋𝑋) = 0)
76adantr 276 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → (𝑋𝑋) = 0)
85, 7eqtrd 2262 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = 0)
98ex 115 . . . . 5 (𝑋 ∈ ℂ → (𝑌 = (𝑋𝑋) → 𝑌 = 0))
104, 9biimtrid 152 . . . 4 (𝑋 ∈ ℂ → ((𝑋𝑋) = 𝑌𝑌 = 0))
1110adantr 276 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌𝑌 = 0))
123, 11sylbird 170 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
13 oveq2 6015 . . . . 5 (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0))
14 addrid 8292 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
1513, 14sylan9eqr 2284 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋)
1615ex 115 . . 3 (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1716adantr 276 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1812, 17impbid 129 1 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  (class class class)co 6007  cc 8005  0cc0 8007   + caddc 8010  cmin 8325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8099  ax-1cn 8100  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sub 8327
This theorem is referenced by:  addn0nid  8528
  Copyright terms: Public domain W3C validator