ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 GIF version

Theorem addid0 8271
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))

Proof of Theorem addid0
StepHypRef Expression
1 simpl 108 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ)
2 simpr 109 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ)
31, 1, 2subaddd 8227 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋))
4 eqcom 2167 . . . . 5 ((𝑋𝑋) = 𝑌𝑌 = (𝑋𝑋))
5 simpr 109 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = (𝑋𝑋))
6 subid 8117 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋𝑋) = 0)
76adantr 274 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → (𝑋𝑋) = 0)
85, 7eqtrd 2198 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋𝑋)) → 𝑌 = 0)
98ex 114 . . . . 5 (𝑋 ∈ ℂ → (𝑌 = (𝑋𝑋) → 𝑌 = 0))
104, 9syl5bi 151 . . . 4 (𝑋 ∈ ℂ → ((𝑋𝑋) = 𝑌𝑌 = 0))
1110adantr 274 . . 3 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋𝑋) = 𝑌𝑌 = 0))
123, 11sylbird 169 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
13 oveq2 5850 . . . . 5 (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0))
14 addid1 8036 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋)
1513, 14sylan9eqr 2221 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋)
1615ex 114 . . 3 (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1716adantr 274 . 2 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋))
1812, 17impbid 128 1 ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751  0cc0 7753   + caddc 7756  cmin 8069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071
This theorem is referenced by:  addn0nid  8272
  Copyright terms: Public domain W3C validator