Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid0 | GIF version |
Description: If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.) |
Ref | Expression |
---|---|
addid0 | ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑋 ∈ ℂ) | |
2 | simpr 110 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → 𝑌 ∈ ℂ) | |
3 | 1, 1, 2 | subaddd 8260 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 𝑋)) |
4 | eqcom 2177 | . . . . 5 ⊢ ((𝑋 − 𝑋) = 𝑌 ↔ 𝑌 = (𝑋 − 𝑋)) | |
5 | simpr 110 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = (𝑋 − 𝑋)) | |
6 | subid 8150 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (𝑋 − 𝑋) = 0) | |
7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → (𝑋 − 𝑋) = 0) |
8 | 5, 7 | eqtrd 2208 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = (𝑋 − 𝑋)) → 𝑌 = 0) |
9 | 8 | ex 115 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑌 = (𝑋 − 𝑋) → 𝑌 = 0)) |
10 | 4, 9 | biimtrid 152 | . . . 4 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
11 | 10 | adantr 276 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 − 𝑋) = 𝑌 → 𝑌 = 0)) |
12 | 3, 11 | sylbird 170 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 → 𝑌 = 0)) |
13 | oveq2 5873 | . . . . 5 ⊢ (𝑌 = 0 → (𝑋 + 𝑌) = (𝑋 + 0)) | |
14 | addid1 8069 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (𝑋 + 0) = 𝑋) | |
15 | 13, 14 | sylan9eqr 2230 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 = 0) → (𝑋 + 𝑌) = 𝑋) |
16 | 15 | ex 115 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
17 | 16 | adantr 276 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝑌 = 0 → (𝑋 + 𝑌) = 𝑋)) |
18 | 12, 17 | impbid 129 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋 ↔ 𝑌 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 (class class class)co 5865 ℂcc 7784 0cc0 7786 + caddc 7789 − cmin 8102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 |
This theorem is referenced by: addn0nid 8305 |
Copyright terms: Public domain | W3C validator |