ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subid1 GIF version

Theorem subid1 7763
Description: Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subid1 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)

Proof of Theorem subid1
StepHypRef Expression
1 addid1 7681 . . 3 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
21oveq1d 5681 . 2 (𝐴 ∈ ℂ → ((𝐴 + 0) − 0) = (𝐴 − 0))
3 0cn 7541 . . 3 0 ∈ ℂ
4 pncan 7749 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝐴 + 0) − 0) = 𝐴)
53, 4mpan2 417 . 2 (𝐴 ∈ ℂ → ((𝐴 + 0) − 0) = 𝐴)
62, 5eqtr3d 2123 1 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  wcel 1439  (class class class)co 5666  cc 7409  0cc0 7411   + caddc 7414  cmin 7714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-resscn 7498  ax-1cn 7499  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7716
This theorem is referenced by:  subneg  7792  subid1i  7815  subid1d  7843  shftidt2  10327  abs2dif  10600  clim0  10734  climi0  10738  geo2lim  10971
  Copyright terms: Public domain W3C validator