![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subid1 | GIF version |
Description: Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
subid1 | ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addid1 7681 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
2 | 1 | oveq1d 5681 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 0) − 0) = (𝐴 − 0)) |
3 | 0cn 7541 | . . 3 ⊢ 0 ∈ ℂ | |
4 | pncan 7749 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝐴 + 0) − 0) = 𝐴) | |
5 | 3, 4 | mpan2 417 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + 0) − 0) = 𝐴) |
6 | 2, 5 | eqtr3d 2123 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 (class class class)co 5666 ℂcc 7409 0cc0 7411 + caddc 7414 − cmin 7714 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-setind 4366 ax-resscn 7498 ax-1cn 7499 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-distr 7510 ax-i2m1 7511 ax-0id 7514 ax-rnegex 7515 ax-cnre 7517 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-sub 7716 |
This theorem is referenced by: subneg 7792 subid1i 7815 subid1d 7843 shftidt2 10327 abs2dif 10600 clim0 10734 climi0 10738 geo2lim 10971 |
Copyright terms: Public domain | W3C validator |