ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00id GIF version

Theorem 00id 8184
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id (0 + 0) = 0

Proof of Theorem 00id
StepHypRef Expression
1 0cn 8035 . 2 0 ∈ ℂ
2 addrid 8181 . 2 (0 ∈ ℂ → (0 + 0) = 0)
31, 2ax-mp 5 1 (0 + 0) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894  0cc0 7896   + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-i2m1 8001  ax-0id 8004
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  negdii  8327  addgt0  8492  addgegt0  8493  addgtge0  8494  addge0  8495  add20  8518  recexaplem2  8696  crap0  9002  iap0  9231  decaddm10  9532  10p10e20  9568  ser0  10642  bcpasc  10875  abs00ap  11244  fsumadd  11588  fsumrelem  11653  arisum  11680  bezoutr1  12225  nnnn0modprm0  12449  pcaddlem  12533  4sqlem19  12603  cnfld0  14203  1kp2ke3k  15454
  Copyright terms: Public domain W3C validator