| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | GIF version | ||
| Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 00id | ⊢ (0 + 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8146 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | addrid 8292 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 0) = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-i2m1 8112 ax-0id 8115 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: negdii 8438 addgt0 8603 addgegt0 8604 addgtge0 8605 addge0 8606 add20 8629 recexaplem2 8807 crap0 9113 iap0 9342 decaddm10 9644 10p10e20 9680 ser0 10763 bcpasc 10996 abs00ap 11581 fsumadd 11925 fsumrelem 11990 arisum 12017 bezoutr1 12562 nnnn0modprm0 12786 pcaddlem 12870 4sqlem19 12940 cnfld0 14543 1kp2ke3k 16112 |
| Copyright terms: Public domain | W3C validator |