ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00id GIF version

Theorem 00id 8186
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id (0 + 0) = 0

Proof of Theorem 00id
StepHypRef Expression
1 0cn 8037 . 2 0 ∈ ℂ
2 addrid 8183 . 2 (0 ∈ ℂ → (0 + 0) = 0)
31, 2ax-mp 5 1 (0 + 0) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7896  0cc0 7898   + caddc 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1cn 7991  ax-icn 7993  ax-addcl 7994  ax-mulcl 7996  ax-i2m1 8003  ax-0id 8006
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  negdii  8329  addgt0  8494  addgegt0  8495  addgtge0  8496  addge0  8497  add20  8520  recexaplem2  8698  crap0  9004  iap0  9233  decaddm10  9534  10p10e20  9570  ser0  10644  bcpasc  10877  abs00ap  11246  fsumadd  11590  fsumrelem  11655  arisum  11682  bezoutr1  12227  nnnn0modprm0  12451  pcaddlem  12535  4sqlem19  12605  cnfld0  14205  1kp2ke3k  15478
  Copyright terms: Public domain W3C validator