ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  00id GIF version

Theorem 00id 8167
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
00id (0 + 0) = 0

Proof of Theorem 00id
StepHypRef Expression
1 0cn 8018 . 2 0 ∈ ℂ
2 addrid 8164 . 2 (0 ∈ ℂ → (0 + 0) = 0)
31, 2ax-mp 5 1 (0 + 0) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877  0cc0 7879   + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977  ax-i2m1 7984  ax-0id 7987
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  negdii  8310  addgt0  8475  addgegt0  8476  addgtge0  8477  addge0  8478  add20  8501  recexaplem2  8679  crap0  8985  iap0  9214  decaddm10  9515  10p10e20  9551  ser0  10625  bcpasc  10858  abs00ap  11227  fsumadd  11571  fsumrelem  11636  arisum  11663  bezoutr1  12200  nnnn0modprm0  12424  pcaddlem  12508  4sqlem19  12578  cnfld0  14127  1kp2ke3k  15370
  Copyright terms: Public domain W3C validator