![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 00id | GIF version |
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
00id | ⊢ (0 + 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7630 | . 2 ⊢ 0 ∈ ℂ | |
2 | addid1 7771 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (0 + 0) = 0 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∈ wcel 1448 (class class class)co 5706 ℂcc 7498 0cc0 7500 + caddc 7503 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 ax-ext 2082 ax-1cn 7588 ax-icn 7590 ax-addcl 7591 ax-mulcl 7593 ax-i2m1 7600 ax-0id 7603 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 df-clel 2096 |
This theorem is referenced by: negdii 7917 addgt0 8077 addgegt0 8078 addgtge0 8079 addge0 8080 add20 8103 recexaplem2 8274 crap0 8574 iap0 8795 decaddm10 9092 10p10e20 9128 ser0 10128 bcpasc 10353 abs00ap 10674 fsumadd 11014 fsumrelem 11079 arisum 11106 bezoutr1 11514 1kp2ke3k 12539 |
Copyright terms: Public domain | W3C validator |