| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | GIF version | ||
| Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 00id | ⊢ (0 + 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8037 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | addrid 8183 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 0) = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-i2m1 8003 ax-0id 8006 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: negdii 8329 addgt0 8494 addgegt0 8495 addgtge0 8496 addge0 8497 add20 8520 recexaplem2 8698 crap0 9004 iap0 9233 decaddm10 9534 10p10e20 9570 ser0 10644 bcpasc 10877 abs00ap 11246 fsumadd 11590 fsumrelem 11655 arisum 11682 bezoutr1 12227 nnnn0modprm0 12451 pcaddlem 12535 4sqlem19 12605 cnfld0 14205 1kp2ke3k 15478 |
| Copyright terms: Public domain | W3C validator |