| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | GIF version | ||
| Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 00id | ⊢ (0 + 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8106 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | addrid 8252 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 0) = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 0cc0 7967 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 ax-ext 2191 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-i2m1 8072 ax-0id 8075 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: negdii 8398 addgt0 8563 addgegt0 8564 addgtge0 8565 addge0 8566 add20 8589 recexaplem2 8767 crap0 9073 iap0 9302 decaddm10 9604 10p10e20 9640 ser0 10722 bcpasc 10955 abs00ap 11539 fsumadd 11883 fsumrelem 11948 arisum 11975 bezoutr1 12520 nnnn0modprm0 12744 pcaddlem 12828 4sqlem19 12898 cnfld0 14500 1kp2ke3k 15998 |
| Copyright terms: Public domain | W3C validator |