| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 00id | GIF version | ||
| Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| 00id | ⊢ (0 + 0) = 0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0cn 8018 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | addrid 8164 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 0) = 0 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-i2m1 7984 ax-0id 7987 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: negdii 8310 addgt0 8475 addgegt0 8476 addgtge0 8477 addge0 8478 add20 8501 recexaplem2 8679 crap0 8985 iap0 9214 decaddm10 9515 10p10e20 9551 ser0 10625 bcpasc 10858 abs00ap 11227 fsumadd 11571 fsumrelem 11636 arisum 11663 bezoutr1 12200 nnnn0modprm0 12424 pcaddlem 12508 4sqlem19 12578 cnfld0 14127 1kp2ke3k 15370 | 
| Copyright terms: Public domain | W3C validator |