| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 00id | GIF version | ||
| Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| 00id | ⊢ (0 + 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8071 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | addrid 8217 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 0) = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 0cc0 7932 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-mulcl 8030 ax-i2m1 8037 ax-0id 8040 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: negdii 8363 addgt0 8528 addgegt0 8529 addgtge0 8530 addge0 8531 add20 8554 recexaplem2 8732 crap0 9038 iap0 9267 decaddm10 9569 10p10e20 9605 ser0 10685 bcpasc 10918 abs00ap 11417 fsumadd 11761 fsumrelem 11826 arisum 11853 bezoutr1 12398 nnnn0modprm0 12622 pcaddlem 12706 4sqlem19 12776 cnfld0 14377 1kp2ke3k 15734 |
| Copyright terms: Public domain | W3C validator |