Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 00id | GIF version |
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
00id | ⊢ (0 + 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7924 | . 2 ⊢ 0 ∈ ℂ | |
2 | addid1 8069 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 0) = 0 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 (class class class)co 5865 ℂcc 7784 0cc0 7786 + caddc 7789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-mulcl 7884 ax-i2m1 7891 ax-0id 7894 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: negdii 8215 addgt0 8379 addgegt0 8380 addgtge0 8381 addge0 8382 add20 8405 recexaplem2 8582 crap0 8888 iap0 9115 decaddm10 9415 10p10e20 9451 ser0 10484 bcpasc 10714 abs00ap 11039 fsumadd 11382 fsumrelem 11447 arisum 11474 bezoutr1 12001 nnnn0modprm0 12222 pcaddlem 12305 1kp2ke3k 14036 |
Copyright terms: Public domain | W3C validator |