![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reim0 | GIF version |
Description: The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
reim0 | ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7919 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | it0e0 9111 | . . . . . 6 ⊢ (i · 0) = 0 | |
3 | 2 | oveq2i 5876 | . . . . 5 ⊢ (𝐴 + (i · 0)) = (𝐴 + 0) |
4 | addid1 8069 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
5 | 3, 4 | eqtrid 2220 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + (i · 0)) = 𝐴) |
6 | 1, 5 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (i · 0)) = 𝐴) |
7 | 6 | fveq2d 5511 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(𝐴 + (i · 0))) = (ℑ‘𝐴)) |
8 | 0re 7932 | . . 3 ⊢ 0 ∈ ℝ | |
9 | crim 10833 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (ℑ‘(𝐴 + (i · 0))) = 0) | |
10 | 8, 9 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(𝐴 + (i · 0))) = 0) |
11 | 7, 10 | eqtr3d 2210 | 1 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 ℝcr 7785 0cc0 7786 ici 7788 + caddc 7789 · cmul 7791 ℑcim 10816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-2 8949 df-cj 10817 df-re 10818 df-im 10819 |
This theorem is referenced by: reim0b 10837 rereb 10838 remul2 10848 immul2 10855 im0 10871 im1 10873 reim0d 10945 |
Copyright terms: Public domain | W3C validator |