![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reim0 | GIF version |
Description: The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
reim0 | ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7475 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | it0e0 8637 | . . . . . 6 ⊢ (i · 0) = 0 | |
3 | 2 | oveq2i 5663 | . . . . 5 ⊢ (𝐴 + (i · 0)) = (𝐴 + 0) |
4 | addid1 7620 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
5 | 3, 4 | syl5eq 2132 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + (i · 0)) = 𝐴) |
6 | 1, 5 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + (i · 0)) = 𝐴) |
7 | 6 | fveq2d 5309 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(𝐴 + (i · 0))) = (ℑ‘𝐴)) |
8 | 0re 7488 | . . 3 ⊢ 0 ∈ ℝ | |
9 | crim 10292 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (ℑ‘(𝐴 + (i · 0))) = 0) | |
10 | 8, 9 | mpan2 416 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(𝐴 + (i · 0))) = 0) |
11 | 7, 10 | eqtr3d 2122 | 1 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 ‘cfv 5015 (class class class)co 5652 ℂcc 7348 ℝcr 7349 0cc0 7350 ici 7352 + caddc 7353 · cmul 7355 ℑcim 10275 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-mulrcl 7444 ax-addcom 7445 ax-mulcom 7446 ax-addass 7447 ax-mulass 7448 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-1rid 7452 ax-0id 7453 ax-rnegex 7454 ax-precex 7455 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-apti 7460 ax-pre-ltadd 7461 ax-pre-mulgt0 7462 ax-pre-mulext 7463 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-po 4123 df-iso 4124 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-reap 8052 df-ap 8059 df-div 8140 df-2 8481 df-cj 10276 df-re 10277 df-im 10278 |
This theorem is referenced by: reim0b 10296 rereb 10297 remul2 10307 immul2 10314 im0 10330 im1 10332 reim0d 10404 |
Copyright terms: Public domain | W3C validator |