ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2a GIF version

Theorem summodclem2a 10989
Description: Lemma for summodc 10991. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummolem2a.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isummolem2a.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
isummolem2a.h 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))
summolem2.5 (𝜑𝑁 ∈ ℕ)
summolem2.6 (𝜑𝑀 ∈ ℤ)
summolem2.7 (𝜑𝐴 ⊆ (ℤ𝑀))
summolem2.8 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
summolem2.9 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Assertion
Ref Expression
summodclem2a (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝑘,𝑀,𝑛   𝐵,𝑛   𝑘,𝐹   𝑘,𝐾,𝑛   𝑓,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓,𝑘)   𝐹(𝑓)   𝐺(𝑓,𝑘,𝑛)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summodclem2a
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isummo.1 . . 3 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
2 isummo.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 isummolem2a.dc . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
4 summolem2.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
5 summolem2.9 . . . . . . . 8 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
6 1zzd 8933 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
7 summolem2.5 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
87nnzd 9024 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
96, 8fzfigd 10045 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ∈ Fin)
10 summolem2.8 . . . . . . . . . . . 12 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
119, 10fihasheqf1od 10377 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝑁)) = (♯‘𝐴))
12 nnnn0 8836 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 hashfz1 10370 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
147, 12, 133syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1511, 14eqtr3d 2134 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = 𝑁)
1615oveq2d 5722 . . . . . . . . 9 (𝜑 → (1...(♯‘𝐴)) = (1...𝑁))
17 isoeq4 5637 . . . . . . . . 9 ((1...(♯‘𝐴)) = (1...𝑁) → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
1816, 17syl 14 . . . . . . . 8 (𝜑 → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
195, 18mpbid 146 . . . . . . 7 (𝜑𝐾 Isom < , < ((1...𝑁), 𝐴))
20 isof1o 5640 . . . . . . 7 (𝐾 Isom < , < ((1...𝑁), 𝐴) → 𝐾:(1...𝑁)–1-1-onto𝐴)
2119, 20syl 14 . . . . . 6 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
22 f1of 5301 . . . . . 6 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:(1...𝑁)⟶𝐴)
2321, 22syl 14 . . . . 5 (𝜑𝐾:(1...𝑁)⟶𝐴)
24 nnuz 9211 . . . . . . 7 ℕ = (ℤ‘1)
257, 24syl6eleq 2192 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
26 eluzfz2 9653 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2725, 26syl 14 . . . . 5 (𝜑𝑁 ∈ (1...𝑁))
2823, 27ffvelrnd 5488 . . . 4 (𝜑 → (𝐾𝑁) ∈ 𝐴)
294, 28sseldd 3048 . . 3 (𝜑 → (𝐾𝑁) ∈ (ℤ𝑀))
304sselda 3047 . . . . . 6 ((𝜑𝑛𝐴) → 𝑛 ∈ (ℤ𝑀))
31 f1ocnvfv2 5611 . . . . . . . . 9 ((𝐾:(1...𝑁)–1-1-onto𝐴𝑛𝐴) → (𝐾‘(𝐾𝑛)) = 𝑛)
3221, 31sylan 279 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝐾𝑛)) = 𝑛)
33 f1ocnv 5314 . . . . . . . . . . . 12 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:𝐴1-1-onto→(1...𝑁))
34 f1of 5301 . . . . . . . . . . . 12 (𝐾:𝐴1-1-onto→(1...𝑁) → 𝐾:𝐴⟶(1...𝑁))
3521, 33, 343syl 17 . . . . . . . . . . 11 (𝜑𝐾:𝐴⟶(1...𝑁))
3635ffvelrnda 5487 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐾𝑛) ∈ (1...𝑁))
37 elfzle2 9649 . . . . . . . . . 10 ((𝐾𝑛) ∈ (1...𝑁) → (𝐾𝑛) ≤ 𝑁)
3836, 37syl 14 . . . . . . . . 9 ((𝜑𝑛𝐴) → (𝐾𝑛) ≤ 𝑁)
3919adantr 272 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝐾 Isom < , < ((1...𝑁), 𝐴))
40 fzssuz 9686 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (ℤ‘1)
41 uzssz 9195 . . . . . . . . . . . . . 14 (ℤ‘1) ⊆ ℤ
42 zssre 8913 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
4341, 42sstri 3056 . . . . . . . . . . . . 13 (ℤ‘1) ⊆ ℝ
4440, 43sstri 3056 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℝ
45 ressxr 7681 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4644, 45sstri 3056 . . . . . . . . . . 11 (1...𝑁) ⊆ ℝ*
4746a1i 9 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (1...𝑁) ⊆ ℝ*)
484adantr 272 . . . . . . . . . . . 12 ((𝜑𝑛𝐴) → 𝐴 ⊆ (ℤ𝑀))
49 uzssz 9195 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℤ
5049, 42sstri 3056 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℝ
5148, 50syl6ss 3059 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → 𝐴 ⊆ ℝ)
5251, 45syl6ss 3059 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝐴 ⊆ ℝ*)
5327adantr 272 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝑁 ∈ (1...𝑁))
54 leisorel 10421 . . . . . . . . . 10 ((𝐾 Isom < , < ((1...𝑁), 𝐴) ∧ ((1...𝑁) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ ((𝐾𝑛) ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → ((𝐾𝑛) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁)))
5539, 47, 52, 36, 53, 54syl122anc 1193 . . . . . . . . 9 ((𝜑𝑛𝐴) → ((𝐾𝑛) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁)))
5638, 55mpbid 146 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁))
5732, 56eqbrtrrd 3897 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑛 ≤ (𝐾𝑁))
58 eluzelz 9185 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
5930, 58syl 14 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑛 ∈ ℤ)
60 eluzelz 9185 . . . . . . . . . 10 ((𝐾𝑁) ∈ (ℤ𝑀) → (𝐾𝑁) ∈ ℤ)
6129, 60syl 14 . . . . . . . . 9 (𝜑 → (𝐾𝑁) ∈ ℤ)
6261adantr 272 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾𝑁) ∈ ℤ)
63 eluz 9189 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → ((𝐾𝑁) ∈ (ℤ𝑛) ↔ 𝑛 ≤ (𝐾𝑁)))
6459, 62, 63syl2anc 406 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾𝑁) ∈ (ℤ𝑛) ↔ 𝑛 ≤ (𝐾𝑁)))
6557, 64mpbird 166 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾𝑁) ∈ (ℤ𝑛))
66 elfzuzb 9641 . . . . . 6 (𝑛 ∈ (𝑀...(𝐾𝑁)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝐾𝑁) ∈ (ℤ𝑛)))
6730, 65, 66sylanbrc 411 . . . . 5 ((𝜑𝑛𝐴) → 𝑛 ∈ (𝑀...(𝐾𝑁)))
6867ex 114 . . . 4 (𝜑 → (𝑛𝐴𝑛 ∈ (𝑀...(𝐾𝑁))))
6968ssrdv 3053 . . 3 (𝜑𝐴 ⊆ (𝑀...(𝐾𝑁)))
701, 2, 3, 29, 69fsum3cvg 10985 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘(𝐾𝑁)))
71 addid2 7772 . . . . 5 (𝑚 ∈ ℂ → (0 + 𝑚) = 𝑚)
7271adantl 273 . . . 4 ((𝜑𝑚 ∈ ℂ) → (0 + 𝑚) = 𝑚)
73 addid1 7771 . . . . 5 (𝑚 ∈ ℂ → (𝑚 + 0) = 𝑚)
7473adantl 273 . . . 4 ((𝜑𝑚 ∈ ℂ) → (𝑚 + 0) = 𝑚)
75 addcl 7617 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑚 + 𝑥) ∈ ℂ)
7675adantl 273 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑚 + 𝑥) ∈ ℂ)
77 0cnd 7631 . . . 4 (𝜑 → 0 ∈ ℂ)
7827, 16eleqtrrd 2179 . . . 4 (𝜑𝑁 ∈ (1...(♯‘𝐴)))
79 iftrue 3426 . . . . . . . . . . . 12 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
8079adantl 273 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
8180, 2eqeltrd 2176 . . . . . . . . . 10 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8281adantlr 464 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8382adantlr 464 . . . . . . . 8 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
84 iffalse 3429 . . . . . . . . . 10 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
85 0cn 7630 . . . . . . . . . 10 0 ∈ ℂ
8684, 85syl6eqel 2190 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8786adantl 273 . . . . . . . 8 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
883adantlr 464 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
89 exmiddc 788 . . . . . . . . 9 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9088, 89syl 14 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9183, 87, 90mpjaodan 753 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
92 simpll 499 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → 𝜑)
93 simpr 109 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 ∈ (ℤ𝑀))
944ssneld 3049 . . . . . . . . 9 (𝜑 → (¬ 𝑘 ∈ (ℤ𝑀) → ¬ 𝑘𝐴))
9592, 93, 94sylc 62 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘𝐴)
9695, 86syl 14 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
97 summolem2.6 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98 eluzdc 9254 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → DECID 𝑘 ∈ (ℤ𝑀))
9997, 98sylan 279 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → DECID 𝑘 ∈ (ℤ𝑀))
100 exmiddc 788 . . . . . . . 8 (DECID 𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ∨ ¬ 𝑘 ∈ (ℤ𝑀)))
10199, 100syl 14 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑀) ∨ ¬ 𝑘 ∈ (ℤ𝑀)))
10291, 96, 101mpjaodan 753 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
103102, 1fmptd 5506 . . . . 5 (𝜑𝐹:ℤ⟶ℂ)
104 eluzelz 9185 . . . . 5 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
105 ffvelrn 5485 . . . . 5 ((𝐹:ℤ⟶ℂ ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) ∈ ℂ)
106103, 104, 105syl2an 285 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝐹𝑚) ∈ ℂ)
107 elnnuz 9212 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
108107biimpri 132 . . . . . . 7 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℕ)
109108adantl 273 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℕ)
110 isof1o 5640 . . . . . . . . . . . 12 (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐾:(1...(♯‘𝐴))–1-1-onto𝐴)
111 f1of 5301 . . . . . . . . . . . 12 (𝐾:(1...(♯‘𝐴))–1-1-onto𝐴𝐾:(1...(♯‘𝐴))⟶𝐴)
1125, 110, 1113syl 17 . . . . . . . . . . 11 (𝜑𝐾:(1...(♯‘𝐴))⟶𝐴)
113112ad2antrr 475 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝐾:(1...(♯‘𝐴))⟶𝐴)
114 1zzd 8933 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 1 ∈ ℤ)
11515, 8eqeltrd 2176 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐴) ∈ ℤ)
116115ad2antrr 475 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (♯‘𝐴) ∈ ℤ)
117 eluzelz 9185 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℤ)
118117ad2antlr 476 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ∈ ℤ)
119114, 116, 1183jca 1129 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ))
120 eluzle 9188 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘1) → 1 ≤ 𝑚)
121120ad2antlr 476 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 1 ≤ 𝑚)
122 simpr 109 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚𝑁)
12315breq2d 3887 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ≤ (♯‘𝐴) ↔ 𝑚𝑁))
124123ad2antrr 475 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝑚 ≤ (♯‘𝐴) ↔ 𝑚𝑁))
125122, 124mpbird 166 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ≤ (♯‘𝐴))
126121, 125jca 302 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (1 ≤ 𝑚𝑚 ≤ (♯‘𝐴)))
127 elfz2 9638 . . . . . . . . . . 11 (𝑚 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (1 ≤ 𝑚𝑚 ≤ (♯‘𝐴))))
128119, 126, 127sylanbrc 411 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ∈ (1...(♯‘𝐴)))
129113, 128ffvelrnd 5488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ 𝐴)
130129iftrued 3428 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) = (𝐾𝑚) / 𝑘𝐵)
1314ad2antrr 475 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝐴 ⊆ (ℤ𝑀))
13223ad2antrr 475 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝐾:(1...𝑁)⟶𝐴)
13316eleq2d 2169 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...𝑁)))
134133ad2antrr 475 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝑚 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...𝑁)))
135128, 134mpbid 146 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ∈ (1...𝑁))
136132, 135ffvelrnd 5488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ 𝐴)
137131, 136sseldd 3048 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ (ℤ𝑀))
13849, 137sseldi 3045 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ ℤ)
139102ralrimiva 2464 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℤ if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
140139ad2antrr 475 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → ∀𝑘 ∈ ℤ if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
141 nfv 1476 . . . . . . . . . . . 12 𝑘(𝐾𝑚) ∈ 𝐴
142 nfcsb1v 2985 . . . . . . . . . . . 12 𝑘(𝐾𝑚) / 𝑘𝐵
143 nfcv 2240 . . . . . . . . . . . 12 𝑘0
144141, 142, 143nfif 3447 . . . . . . . . . . 11 𝑘if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0)
145144nfel1 2251 . . . . . . . . . 10 𝑘if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ
146 eleq1 2162 . . . . . . . . . . . 12 (𝑘 = (𝐾𝑚) → (𝑘𝐴 ↔ (𝐾𝑚) ∈ 𝐴))
147 csbeq1a 2963 . . . . . . . . . . . 12 (𝑘 = (𝐾𝑚) → 𝐵 = (𝐾𝑚) / 𝑘𝐵)
148146, 147ifbieq1d 3441 . . . . . . . . . . 11 (𝑘 = (𝐾𝑚) → if(𝑘𝐴, 𝐵, 0) = if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0))
149148eleq1d 2168 . . . . . . . . . 10 (𝑘 = (𝐾𝑚) → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ))
150145, 149rspc 2738 . . . . . . . . 9 ((𝐾𝑚) ∈ ℤ → (∀𝑘 ∈ ℤ if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ))
151138, 140, 150sylc 62 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ)
152130, 151eqeltrrd 2177 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ)
153 0cnd 7631 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ ¬ 𝑚𝑁) → 0 ∈ ℂ)
154109nnzd 9024 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℤ)
1558adantr 272 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑁 ∈ ℤ)
156 zdcle 8979 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑚𝑁)
157154, 155, 156syl2anc 406 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘1)) → DECID 𝑚𝑁)
158152, 153, 157ifcldadc 3448 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘1)) → if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ)
159 breq1 3878 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛𝑁𝑚𝑁))
160 fveq2 5353 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
161160csbeq1d 2961 . . . . . . . 8 (𝑛 = 𝑚(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑚) / 𝑘𝐵)
162159, 161ifbieq1d 3441 . . . . . . 7 (𝑛 = 𝑚 → if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
163 isummolem2a.h . . . . . . 7 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))
164162, 163fvmptg 5429 . . . . . 6 ((𝑚 ∈ ℕ ∧ if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ) → (𝐻𝑚) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
165109, 158, 164syl2anc 406 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
166165, 158eqeltrd 2176 . . . 4 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) ∈ ℂ)
167 fveqeq2 5362 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) = 0 ↔ (𝐹𝑚) = 0))
168 eldifi 3145 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ (𝑀...(𝐾‘(♯‘𝐴))))
169 elfzelz 9647 . . . . . . . . 9 (𝑘 ∈ (𝑀...(𝐾‘(♯‘𝐴))) → 𝑘 ∈ ℤ)
170168, 169syl 14 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ ℤ)
171 eldifn 3146 . . . . . . . . . 10 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → ¬ 𝑘𝐴)
172171, 84syl 14 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
173172, 85syl6eqel 2190 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1741fvmpt2 5436 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
175170, 173, 174syl2anc 406 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
176175, 172eqtrd 2132 . . . . . 6 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = 0)
177167, 176vtoclga 2707 . . . . 5 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑚) = 0)
178177adantl 273 . . . 4 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑚) = 0)
179112ffvelrnda 5487 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ 𝐴)
180179iftrued 3428 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) = (𝐾𝑥) / 𝑘𝐵)
1814adantr 272 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ𝑀))
182181, 179sseldd 3048 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ (ℤ𝑀))
183 eluzelz 9185 . . . . . . 7 ((𝐾𝑥) ∈ (ℤ𝑀) → (𝐾𝑥) ∈ ℤ)
184182, 183syl 14 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ ℤ)
185 simpl 108 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝜑)
186185, 184jca 302 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝜑 ∧ (𝐾𝑥) ∈ ℤ))
187 nfv 1476 . . . . . . . . 9 𝑘(𝜑 ∧ (𝐾𝑥) ∈ ℤ)
188 nfv 1476 . . . . . . . . . . 11 𝑘(𝐾𝑥) ∈ 𝐴
189 nfcsb1v 2985 . . . . . . . . . . 11 𝑘(𝐾𝑥) / 𝑘𝐵
190188, 189, 143nfif 3447 . . . . . . . . . 10 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0)
191190nfel1 2251 . . . . . . . . 9 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ
192187, 191nfim 1519 . . . . . . . 8 𝑘((𝜑 ∧ (𝐾𝑥) ∈ ℤ) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
193 eleq1 2162 . . . . . . . . . 10 (𝑘 = (𝐾𝑥) → (𝑘 ∈ ℤ ↔ (𝐾𝑥) ∈ ℤ))
194193anbi2d 455 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → ((𝜑𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝐾𝑥) ∈ ℤ)))
195 eleq1 2162 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → (𝑘𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
196 csbeq1a 2963 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → 𝐵 = (𝐾𝑥) / 𝑘𝐵)
197195, 196ifbieq1d 3441 . . . . . . . . . 10 (𝑘 = (𝐾𝑥) → if(𝑘𝐴, 𝐵, 0) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
198197eleq1d 2168 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ))
199194, 198imbi12d 233 . . . . . . . 8 (𝑘 = (𝐾𝑥) → (((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ) ↔ ((𝜑 ∧ (𝐾𝑥) ∈ ℤ) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)))
200192, 199, 102vtoclg1f 2700 . . . . . . 7 ((𝐾𝑥) ∈ 𝐴 → ((𝜑 ∧ (𝐾𝑥) ∈ ℤ) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ))
201179, 186, 200sylc 62 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
202 eleq1 2162 . . . . . . . 8 (𝑛 = (𝐾𝑥) → (𝑛𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
203 csbeq1 2958 . . . . . . . 8 (𝑛 = (𝐾𝑥) → 𝑛 / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
204202, 203ifbieq1d 3441 . . . . . . 7 (𝑛 = (𝐾𝑥) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
205 nfcv 2240 . . . . . . . . 9 𝑛if(𝑘𝐴, 𝐵, 0)
206 nfv 1476 . . . . . . . . . 10 𝑘 𝑛𝐴
207 nfcsb1v 2985 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
208206, 207, 143nfif 3447 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
209 eleq1 2162 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
210 csbeq1a 2963 . . . . . . . . . 10 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
211209, 210ifbieq1d 3441 . . . . . . . . 9 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
212205, 208, 211cbvmpt 3963 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
2131, 212eqtri 2120 . . . . . . 7 𝐹 = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
214204, 213fvmptg 5429 . . . . . 6 (((𝐾𝑥) ∈ ℤ ∧ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
215184, 201, 214syl2anc 406 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
216 elfznn 9675 . . . . . . . 8 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
217216adantl 273 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ ℕ)
218 elfzle2 9649 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
219218adantl 273 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ≤ (♯‘𝐴))
22015breq2d 3887 . . . . . . . . . . 11 (𝜑 → (𝑥 ≤ (♯‘𝐴) ↔ 𝑥𝑁))
221220adantr 272 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝑥 ≤ (♯‘𝐴) ↔ 𝑥𝑁))
222219, 221mpbid 146 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥𝑁)
223222iftrued 3428 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0) = (𝐾𝑥) / 𝑘𝐵)
224180, 201eqeltrrd 2177 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) / 𝑘𝐵 ∈ ℂ)
225223, 224eqeltrd 2176 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
226 breq1 3878 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑛𝑁𝑥𝑁))
227 fveq2 5353 . . . . . . . . . 10 (𝑛 = 𝑥 → (𝐾𝑛) = (𝐾𝑥))
228227csbeq1d 2961 . . . . . . . . 9 (𝑛 = 𝑥(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
229226, 228ifbieq1d 3441 . . . . . . . 8 (𝑛 = 𝑥 → if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0) = if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0))
230229, 163fvmptg 5429 . . . . . . 7 ((𝑥 ∈ ℕ ∧ if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ) → (𝐻𝑥) = if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0))
231217, 225, 230syl2anc 406 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0))
232231, 223eqtrd 2132 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐾𝑥) / 𝑘𝐵)
233180, 215, 2323eqtr4rd 2143 . . . 4 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐹‘(𝐾𝑥)))
23472, 74, 76, 77, 5, 78, 4, 106, 166, 178, 233seq3coll 10426 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐾𝑁)) = (seq1( + , 𝐻)‘𝑁))
23515, 7eqeltrd 2176 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℕ)
236235, 7jca 302 . . . 4 (𝜑 → ((♯‘𝐴) ∈ ℕ ∧ 𝑁 ∈ ℕ))
23716eqcomd 2105 . . . . . 6 (𝜑 → (1...𝑁) = (1...(♯‘𝐴)))
238 f1oeq2 5293 . . . . . 6 ((1...𝑁) = (1...(♯‘𝐴)) → (𝑓:(1...𝑁)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
239237, 238syl 14 . . . . 5 (𝜑 → (𝑓:(1...𝑁)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
24010, 239mpbid 146 . . . 4 (𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
241 isummolem2a.g . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
2421, 2, 236, 240, 21, 241, 163summodclem3 10988 . . 3 (𝜑 → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , 𝐻)‘𝑁))
24315fveq2d 5357 . . 3 (𝜑 → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , 𝐺)‘𝑁))
244234, 242, 2433eqtr2d 2138 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐾𝑁)) = (seq1( + , 𝐺)‘𝑁))
24570, 244breqtrd 3899 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 670  DECID wdc 786  w3a 930   = wceq 1299  wcel 1448  wral 2375  csb 2955  cdif 3018  wss 3021  ifcif 3421   class class class wbr 3875  cmpt 3929  ccnv 4476  wf 5055  1-1-ontowf1o 5058  cfv 5059   Isom wiso 5060  (class class class)co 5706  cc 7498  cr 7499  0cc0 7500  1c1 7501   + caddc 7503  *cxr 7671   < clt 7672  cle 7673  cn 8578  0cn0 8829  cz 8906  cuz 9176  ...cfz 9631  seqcseq 10059  chash 10362  cli 10886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-1o 6243  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-ihash 10363  df-cj 10455  df-rsqrt 10610  df-abs 10611  df-clim 10887
This theorem is referenced by:  summodclem2  10990  zsumdc  10992
  Copyright terms: Public domain W3C validator