ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2a GIF version

Theorem summodclem2a 11150
Description: Lemma for summodc 11152. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummolem2a.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isummolem2a.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
isummolem2a.h 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))
summolem2.5 (𝜑𝑁 ∈ ℕ)
summolem2.6 (𝜑𝑀 ∈ ℤ)
summolem2.7 (𝜑𝐴 ⊆ (ℤ𝑀))
summolem2.8 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
summolem2.9 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Assertion
Ref Expression
summodclem2a (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝑘,𝑀,𝑛   𝐵,𝑛   𝑘,𝐹   𝑘,𝐾,𝑛   𝑓,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓,𝑘)   𝐹(𝑓)   𝐺(𝑓,𝑘,𝑛)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summodclem2a
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isummo.1 . . 3 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
2 isummo.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 isummolem2a.dc . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
4 summolem2.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
5 summolem2.9 . . . . . . . 8 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
6 1zzd 9081 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
7 summolem2.5 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
87nnzd 9172 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
96, 8fzfigd 10204 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ∈ Fin)
10 summolem2.8 . . . . . . . . . . . 12 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
119, 10fihasheqf1od 10536 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝑁)) = (♯‘𝐴))
12 nnnn0 8984 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
13 hashfz1 10529 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
147, 12, 133syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1511, 14eqtr3d 2174 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = 𝑁)
1615oveq2d 5790 . . . . . . . . 9 (𝜑 → (1...(♯‘𝐴)) = (1...𝑁))
17 isoeq4 5705 . . . . . . . . 9 ((1...(♯‘𝐴)) = (1...𝑁) → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
1816, 17syl 14 . . . . . . . 8 (𝜑 → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
195, 18mpbid 146 . . . . . . 7 (𝜑𝐾 Isom < , < ((1...𝑁), 𝐴))
20 isof1o 5708 . . . . . . 7 (𝐾 Isom < , < ((1...𝑁), 𝐴) → 𝐾:(1...𝑁)–1-1-onto𝐴)
2119, 20syl 14 . . . . . 6 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
22 f1of 5367 . . . . . 6 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:(1...𝑁)⟶𝐴)
2321, 22syl 14 . . . . 5 (𝜑𝐾:(1...𝑁)⟶𝐴)
24 nnuz 9361 . . . . . . 7 ℕ = (ℤ‘1)
257, 24eleqtrdi 2232 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
26 eluzfz2 9812 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2725, 26syl 14 . . . . 5 (𝜑𝑁 ∈ (1...𝑁))
2823, 27ffvelrnd 5556 . . . 4 (𝜑 → (𝐾𝑁) ∈ 𝐴)
294, 28sseldd 3098 . . 3 (𝜑 → (𝐾𝑁) ∈ (ℤ𝑀))
304sselda 3097 . . . . . 6 ((𝜑𝑛𝐴) → 𝑛 ∈ (ℤ𝑀))
31 f1ocnvfv2 5679 . . . . . . . . 9 ((𝐾:(1...𝑁)–1-1-onto𝐴𝑛𝐴) → (𝐾‘(𝐾𝑛)) = 𝑛)
3221, 31sylan 281 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝐾𝑛)) = 𝑛)
33 f1ocnv 5380 . . . . . . . . . . . 12 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:𝐴1-1-onto→(1...𝑁))
34 f1of 5367 . . . . . . . . . . . 12 (𝐾:𝐴1-1-onto→(1...𝑁) → 𝐾:𝐴⟶(1...𝑁))
3521, 33, 343syl 17 . . . . . . . . . . 11 (𝜑𝐾:𝐴⟶(1...𝑁))
3635ffvelrnda 5555 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐾𝑛) ∈ (1...𝑁))
37 elfzle2 9808 . . . . . . . . . 10 ((𝐾𝑛) ∈ (1...𝑁) → (𝐾𝑛) ≤ 𝑁)
3836, 37syl 14 . . . . . . . . 9 ((𝜑𝑛𝐴) → (𝐾𝑛) ≤ 𝑁)
3919adantr 274 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝐾 Isom < , < ((1...𝑁), 𝐴))
40 fzssuz 9845 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (ℤ‘1)
41 uzssz 9345 . . . . . . . . . . . . . 14 (ℤ‘1) ⊆ ℤ
42 zssre 9061 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
4341, 42sstri 3106 . . . . . . . . . . . . 13 (ℤ‘1) ⊆ ℝ
4440, 43sstri 3106 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℝ
45 ressxr 7809 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4644, 45sstri 3106 . . . . . . . . . . 11 (1...𝑁) ⊆ ℝ*
4746a1i 9 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (1...𝑁) ⊆ ℝ*)
484adantr 274 . . . . . . . . . . . 12 ((𝜑𝑛𝐴) → 𝐴 ⊆ (ℤ𝑀))
49 uzssz 9345 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℤ
5049, 42sstri 3106 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℝ
5148, 50sstrdi 3109 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → 𝐴 ⊆ ℝ)
5251, 45sstrdi 3109 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝐴 ⊆ ℝ*)
5327adantr 274 . . . . . . . . . 10 ((𝜑𝑛𝐴) → 𝑁 ∈ (1...𝑁))
54 leisorel 10580 . . . . . . . . . 10 ((𝐾 Isom < , < ((1...𝑁), 𝐴) ∧ ((1...𝑁) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ ((𝐾𝑛) ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → ((𝐾𝑛) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁)))
5539, 47, 52, 36, 53, 54syl122anc 1225 . . . . . . . . 9 ((𝜑𝑛𝐴) → ((𝐾𝑛) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁)))
5638, 55mpbid 146 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾‘(𝐾𝑛)) ≤ (𝐾𝑁))
5732, 56eqbrtrrd 3952 . . . . . . 7 ((𝜑𝑛𝐴) → 𝑛 ≤ (𝐾𝑁))
58 eluzelz 9335 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
5930, 58syl 14 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑛 ∈ ℤ)
60 eluzelz 9335 . . . . . . . . . 10 ((𝐾𝑁) ∈ (ℤ𝑀) → (𝐾𝑁) ∈ ℤ)
6129, 60syl 14 . . . . . . . . 9 (𝜑 → (𝐾𝑁) ∈ ℤ)
6261adantr 274 . . . . . . . 8 ((𝜑𝑛𝐴) → (𝐾𝑁) ∈ ℤ)
63 eluz 9339 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → ((𝐾𝑁) ∈ (ℤ𝑛) ↔ 𝑛 ≤ (𝐾𝑁)))
6459, 62, 63syl2anc 408 . . . . . . 7 ((𝜑𝑛𝐴) → ((𝐾𝑁) ∈ (ℤ𝑛) ↔ 𝑛 ≤ (𝐾𝑁)))
6557, 64mpbird 166 . . . . . 6 ((𝜑𝑛𝐴) → (𝐾𝑁) ∈ (ℤ𝑛))
66 elfzuzb 9800 . . . . . 6 (𝑛 ∈ (𝑀...(𝐾𝑁)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝐾𝑁) ∈ (ℤ𝑛)))
6730, 65, 66sylanbrc 413 . . . . 5 ((𝜑𝑛𝐴) → 𝑛 ∈ (𝑀...(𝐾𝑁)))
6867ex 114 . . . 4 (𝜑 → (𝑛𝐴𝑛 ∈ (𝑀...(𝐾𝑁))))
6968ssrdv 3103 . . 3 (𝜑𝐴 ⊆ (𝑀...(𝐾𝑁)))
701, 2, 3, 29, 69fsum3cvg 11147 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘(𝐾𝑁)))
71 addid2 7901 . . . . 5 (𝑚 ∈ ℂ → (0 + 𝑚) = 𝑚)
7271adantl 275 . . . 4 ((𝜑𝑚 ∈ ℂ) → (0 + 𝑚) = 𝑚)
73 addid1 7900 . . . . 5 (𝑚 ∈ ℂ → (𝑚 + 0) = 𝑚)
7473adantl 275 . . . 4 ((𝜑𝑚 ∈ ℂ) → (𝑚 + 0) = 𝑚)
75 addcl 7745 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑚 + 𝑥) ∈ ℂ)
7675adantl 275 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑚 + 𝑥) ∈ ℂ)
77 0cnd 7759 . . . 4 (𝜑 → 0 ∈ ℂ)
7827, 16eleqtrrd 2219 . . . 4 (𝜑𝑁 ∈ (1...(♯‘𝐴)))
79 iftrue 3479 . . . . . . . . . . . 12 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
8079adantl 275 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
8180, 2eqeltrd 2216 . . . . . . . . . 10 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8281adantlr 468 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8382adantlr 468 . . . . . . . 8 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
84 iffalse 3482 . . . . . . . . . 10 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
85 0cn 7758 . . . . . . . . . 10 0 ∈ ℂ
8684, 85eqeltrdi 2230 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
8786adantl 275 . . . . . . . 8 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
883adantlr 468 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
89 exmiddc 821 . . . . . . . . 9 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9088, 89syl 14 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
9183, 87, 90mpjaodan 787 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
92 simpll 518 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → 𝜑)
93 simpr 109 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 ∈ (ℤ𝑀))
944ssneld 3099 . . . . . . . . 9 (𝜑 → (¬ 𝑘 ∈ (ℤ𝑀) → ¬ 𝑘𝐴))
9592, 93, 94sylc 62 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘𝐴)
9695, 86syl 14 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
97 summolem2.6 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98 eluzdc 9404 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → DECID 𝑘 ∈ (ℤ𝑀))
9997, 98sylan 281 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → DECID 𝑘 ∈ (ℤ𝑀))
100 exmiddc 821 . . . . . . . 8 (DECID 𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ∨ ¬ 𝑘 ∈ (ℤ𝑀)))
10199, 100syl 14 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑀) ∨ ¬ 𝑘 ∈ (ℤ𝑀)))
10291, 96, 101mpjaodan 787 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
103102, 1fmptd 5574 . . . . 5 (𝜑𝐹:ℤ⟶ℂ)
104 eluzelz 9335 . . . . 5 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
105 ffvelrn 5553 . . . . 5 ((𝐹:ℤ⟶ℂ ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) ∈ ℂ)
106103, 104, 105syl2an 287 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝐹𝑚) ∈ ℂ)
107 elnnuz 9362 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
108107biimpri 132 . . . . . . 7 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℕ)
109108adantl 275 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℕ)
110 isof1o 5708 . . . . . . . . . . . 12 (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐾:(1...(♯‘𝐴))–1-1-onto𝐴)
111 f1of 5367 . . . . . . . . . . . 12 (𝐾:(1...(♯‘𝐴))–1-1-onto𝐴𝐾:(1...(♯‘𝐴))⟶𝐴)
1125, 110, 1113syl 17 . . . . . . . . . . 11 (𝜑𝐾:(1...(♯‘𝐴))⟶𝐴)
113112ad2antrr 479 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝐾:(1...(♯‘𝐴))⟶𝐴)
114 1zzd 9081 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 1 ∈ ℤ)
11515, 8eqeltrd 2216 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐴) ∈ ℤ)
116115ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (♯‘𝐴) ∈ ℤ)
117 eluzelz 9335 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℤ)
118117ad2antlr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ∈ ℤ)
119114, 116, 1183jca 1161 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ))
120 eluzle 9338 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ‘1) → 1 ≤ 𝑚)
121120ad2antlr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 1 ≤ 𝑚)
122 simpr 109 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚𝑁)
12315breq2d 3941 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ≤ (♯‘𝐴) ↔ 𝑚𝑁))
124123ad2antrr 479 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝑚 ≤ (♯‘𝐴) ↔ 𝑚𝑁))
125122, 124mpbird 166 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ≤ (♯‘𝐴))
126121, 125jca 304 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (1 ≤ 𝑚𝑚 ≤ (♯‘𝐴)))
127 elfz2 9797 . . . . . . . . . . 11 (𝑚 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (1 ≤ 𝑚𝑚 ≤ (♯‘𝐴))))
128119, 126, 127sylanbrc 413 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ∈ (1...(♯‘𝐴)))
129113, 128ffvelrnd 5556 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ 𝐴)
130129iftrued 3481 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) = (𝐾𝑚) / 𝑘𝐵)
1314ad2antrr 479 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝐴 ⊆ (ℤ𝑀))
13223ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝐾:(1...𝑁)⟶𝐴)
13316eleq2d 2209 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...𝑁)))
134133ad2antrr 479 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝑚 ∈ (1...(♯‘𝐴)) ↔ 𝑚 ∈ (1...𝑁)))
135128, 134mpbid 146 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → 𝑚 ∈ (1...𝑁))
136132, 135ffvelrnd 5556 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ 𝐴)
137131, 136sseldd 3098 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ (ℤ𝑀))
13849, 137sseldi 3095 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) ∈ ℤ)
139102ralrimiva 2505 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℤ if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
140139ad2antrr 479 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → ∀𝑘 ∈ ℤ if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
141 nfv 1508 . . . . . . . . . . . 12 𝑘(𝐾𝑚) ∈ 𝐴
142 nfcsb1v 3035 . . . . . . . . . . . 12 𝑘(𝐾𝑚) / 𝑘𝐵
143 nfcv 2281 . . . . . . . . . . . 12 𝑘0
144141, 142, 143nfif 3500 . . . . . . . . . . 11 𝑘if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0)
145144nfel1 2292 . . . . . . . . . 10 𝑘if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ
146 eleq1 2202 . . . . . . . . . . . 12 (𝑘 = (𝐾𝑚) → (𝑘𝐴 ↔ (𝐾𝑚) ∈ 𝐴))
147 csbeq1a 3012 . . . . . . . . . . . 12 (𝑘 = (𝐾𝑚) → 𝐵 = (𝐾𝑚) / 𝑘𝐵)
148146, 147ifbieq1d 3494 . . . . . . . . . . 11 (𝑘 = (𝐾𝑚) → if(𝑘𝐴, 𝐵, 0) = if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0))
149148eleq1d 2208 . . . . . . . . . 10 (𝑘 = (𝐾𝑚) → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ))
150145, 149rspc 2783 . . . . . . . . 9 ((𝐾𝑚) ∈ ℤ → (∀𝑘 ∈ ℤ if(𝑘𝐴, 𝐵, 0) ∈ ℂ → if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ))
151138, 140, 150sylc 62 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → if((𝐾𝑚) ∈ 𝐴, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ)
152130, 151eqeltrrd 2217 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚𝑁) → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ)
153 0cnd 7759 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ ¬ 𝑚𝑁) → 0 ∈ ℂ)
154109nnzd 9172 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℤ)
1558adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑁 ∈ ℤ)
156 zdcle 9127 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑚𝑁)
157154, 155, 156syl2anc 408 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘1)) → DECID 𝑚𝑁)
158152, 153, 157ifcldadc 3501 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘1)) → if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ)
159 breq1 3932 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛𝑁𝑚𝑁))
160 fveq2 5421 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
161160csbeq1d 3010 . . . . . . . 8 (𝑛 = 𝑚(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑚) / 𝑘𝐵)
162159, 161ifbieq1d 3494 . . . . . . 7 (𝑛 = 𝑚 → if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
163 isummolem2a.h . . . . . . 7 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))
164162, 163fvmptg 5497 . . . . . 6 ((𝑚 ∈ ℕ ∧ if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ) → (𝐻𝑚) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
165109, 158, 164syl2anc 408 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
166165, 158eqeltrd 2216 . . . 4 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) ∈ ℂ)
167 fveqeq2 5430 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) = 0 ↔ (𝐹𝑚) = 0))
168 eldifi 3198 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ (𝑀...(𝐾‘(♯‘𝐴))))
169 elfzelz 9806 . . . . . . . . 9 (𝑘 ∈ (𝑀...(𝐾‘(♯‘𝐴))) → 𝑘 ∈ ℤ)
170168, 169syl 14 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑘 ∈ ℤ)
171 eldifn 3199 . . . . . . . . . 10 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → ¬ 𝑘𝐴)
172171, 84syl 14 . . . . . . . . 9 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
173172, 85eqeltrdi 2230 . . . . . . . 8 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1741fvmpt2 5504 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
175170, 173, 174syl2anc 408 . . . . . . 7 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
176175, 172eqtrd 2172 . . . . . 6 (𝑘 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑘) = 0)
177167, 176vtoclga 2752 . . . . 5 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → (𝐹𝑚) = 0)
178177adantl 275 . . . 4 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑚) = 0)
179112ffvelrnda 5555 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ 𝐴)
180179iftrued 3481 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) = (𝐾𝑥) / 𝑘𝐵)
1814adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ𝑀))
182181, 179sseldd 3098 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ (ℤ𝑀))
183 eluzelz 9335 . . . . . . 7 ((𝐾𝑥) ∈ (ℤ𝑀) → (𝐾𝑥) ∈ ℤ)
184182, 183syl 14 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ ℤ)
185 simpl 108 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝜑)
186185, 184jca 304 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝜑 ∧ (𝐾𝑥) ∈ ℤ))
187 nfv 1508 . . . . . . . . 9 𝑘(𝜑 ∧ (𝐾𝑥) ∈ ℤ)
188 nfv 1508 . . . . . . . . . . 11 𝑘(𝐾𝑥) ∈ 𝐴
189 nfcsb1v 3035 . . . . . . . . . . 11 𝑘(𝐾𝑥) / 𝑘𝐵
190188, 189, 143nfif 3500 . . . . . . . . . 10 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0)
191190nfel1 2292 . . . . . . . . 9 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ
192187, 191nfim 1551 . . . . . . . 8 𝑘((𝜑 ∧ (𝐾𝑥) ∈ ℤ) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
193 eleq1 2202 . . . . . . . . . 10 (𝑘 = (𝐾𝑥) → (𝑘 ∈ ℤ ↔ (𝐾𝑥) ∈ ℤ))
194193anbi2d 459 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → ((𝜑𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝐾𝑥) ∈ ℤ)))
195 eleq1 2202 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → (𝑘𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
196 csbeq1a 3012 . . . . . . . . . . 11 (𝑘 = (𝐾𝑥) → 𝐵 = (𝐾𝑥) / 𝑘𝐵)
197195, 196ifbieq1d 3494 . . . . . . . . . 10 (𝑘 = (𝐾𝑥) → if(𝑘𝐴, 𝐵, 0) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
198197eleq1d 2208 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → (if(𝑘𝐴, 𝐵, 0) ∈ ℂ ↔ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ))
199194, 198imbi12d 233 . . . . . . . 8 (𝑘 = (𝐾𝑥) → (((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ) ↔ ((𝜑 ∧ (𝐾𝑥) ∈ ℤ) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)))
200192, 199, 102vtoclg1f 2745 . . . . . . 7 ((𝐾𝑥) ∈ 𝐴 → ((𝜑 ∧ (𝐾𝑥) ∈ ℤ) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ))
201179, 186, 200sylc 62 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
202 eleq1 2202 . . . . . . . 8 (𝑛 = (𝐾𝑥) → (𝑛𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
203 csbeq1 3006 . . . . . . . 8 (𝑛 = (𝐾𝑥) → 𝑛 / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
204202, 203ifbieq1d 3494 . . . . . . 7 (𝑛 = (𝐾𝑥) → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
205 nfcv 2281 . . . . . . . . 9 𝑛if(𝑘𝐴, 𝐵, 0)
206 nfv 1508 . . . . . . . . . 10 𝑘 𝑛𝐴
207 nfcsb1v 3035 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐵
208206, 207, 143nfif 3500 . . . . . . . . 9 𝑘if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
209 eleq1 2202 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑘𝐴𝑛𝐴))
210 csbeq1a 3012 . . . . . . . . . 10 (𝑘 = 𝑛𝐵 = 𝑛 / 𝑘𝐵)
211209, 210ifbieq1d 3494 . . . . . . . . 9 (𝑘 = 𝑛 → if(𝑘𝐴, 𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
212205, 208, 211cbvmpt 4023 . . . . . . . 8 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
2131, 212eqtri 2160 . . . . . . 7 𝐹 = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
214204, 213fvmptg 5497 . . . . . 6 (((𝐾𝑥) ∈ ℤ ∧ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
215184, 201, 214syl2anc 408 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 0))
216 elfznn 9834 . . . . . . . 8 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
217216adantl 275 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ ℕ)
218 elfzle2 9808 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
219218adantl 275 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ≤ (♯‘𝐴))
22015breq2d 3941 . . . . . . . . . . 11 (𝜑 → (𝑥 ≤ (♯‘𝐴) ↔ 𝑥𝑁))
221220adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝑥 ≤ (♯‘𝐴) ↔ 𝑥𝑁))
222219, 221mpbid 146 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥𝑁)
223222iftrued 3481 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0) = (𝐾𝑥) / 𝑘𝐵)
224180, 201eqeltrrd 2217 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) / 𝑘𝐵 ∈ ℂ)
225223, 224eqeltrd 2216 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ)
226 breq1 3932 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑛𝑁𝑥𝑁))
227 fveq2 5421 . . . . . . . . . 10 (𝑛 = 𝑥 → (𝐾𝑛) = (𝐾𝑥))
228227csbeq1d 3010 . . . . . . . . 9 (𝑛 = 𝑥(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
229226, 228ifbieq1d 3494 . . . . . . . 8 (𝑛 = 𝑥 → if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0) = if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0))
230229, 163fvmptg 5497 . . . . . . 7 ((𝑥 ∈ ℕ ∧ if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0) ∈ ℂ) → (𝐻𝑥) = if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0))
231217, 225, 230syl2anc 408 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = if(𝑥𝑁, (𝐾𝑥) / 𝑘𝐵, 0))
232231, 223eqtrd 2172 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐾𝑥) / 𝑘𝐵)
233180, 215, 2323eqtr4rd 2183 . . . 4 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐹‘(𝐾𝑥)))
23472, 74, 76, 77, 5, 78, 4, 106, 166, 178, 233seq3coll 10585 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐾𝑁)) = (seq1( + , 𝐻)‘𝑁))
23515, 7eqeltrd 2216 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℕ)
236235, 7jca 304 . . . 4 (𝜑 → ((♯‘𝐴) ∈ ℕ ∧ 𝑁 ∈ ℕ))
23716eqcomd 2145 . . . . . 6 (𝜑 → (1...𝑁) = (1...(♯‘𝐴)))
238 f1oeq2 5357 . . . . . 6 ((1...𝑁) = (1...(♯‘𝐴)) → (𝑓:(1...𝑁)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
239237, 238syl 14 . . . . 5 (𝜑 → (𝑓:(1...𝑁)–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1-onto𝐴))
24010, 239mpbid 146 . . . 4 (𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
241 isummolem2a.g . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
2421, 2, 236, 240, 21, 241, 163summodclem3 11149 . . 3 (𝜑 → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , 𝐻)‘𝑁))
24315fveq2d 5425 . . 3 (𝜑 → (seq1( + , 𝐺)‘(♯‘𝐴)) = (seq1( + , 𝐺)‘𝑁))
244234, 242, 2433eqtr2d 2178 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐾𝑁)) = (seq1( + , 𝐺)‘𝑁))
24570, 244breqtrd 3954 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wral 2416  csb 3003  cdif 3068  wss 3071  ifcif 3474   class class class wbr 3929  cmpt 3989  ccnv 4538  wf 5119  1-1-ontowf1o 5122  cfv 5123   Isom wiso 5124  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623  *cxr 7799   < clt 7800  cle 7801  cn 8720  0cn0 8977  cz 9054  cuz 9326  ...cfz 9790  seqcseq 10218  chash 10521  cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  summodclem2  11151  zsumdc  11153
  Copyright terms: Public domain W3C validator