![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid1d | GIF version |
Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
addid1d | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addid1 7771 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 (class class class)co 5706 ℂcc 7498 0cc0 7500 + caddc 7503 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-0id 7603 |
This theorem is referenced by: subsub2 7861 negsub 7881 ltaddneg 8053 ltaddpos 8081 addge01 8101 add20 8103 apreap 8215 nnge1 8601 nnnn0addcl 8859 un0addcl 8862 peano2z 8942 zaddcl 8946 uzaddcl 9231 xaddid1 9486 fzosubel3 9814 expadd 10176 faclbnd6 10331 omgadd 10389 reim0b 10475 rereb 10476 immul2 10493 resqrexlemcalc3 10628 resqrexlemnm 10630 max0addsup 10831 fsumsplit 11015 sumsplitdc 11040 bezoutlema 11480 trilpolemlt1 12818 |
Copyright terms: Public domain | W3C validator |