Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid1d | GIF version |
Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
addid1d | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addid1 8057 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7882 |
This theorem is referenced by: subsub2 8147 negsub 8167 ltaddneg 8343 ltaddpos 8371 addge01 8391 add20 8393 apreap 8506 nnge1 8901 nnnn0addcl 9165 un0addcl 9168 peano2z 9248 zaddcl 9252 uzaddcl 9545 xaddid1 9819 fzosubel3 10152 expadd 10518 faclbnd6 10678 omgadd 10737 reim0b 10826 rereb 10827 immul2 10844 resqrexlemcalc3 10980 resqrexlemnm 10982 max0addsup 11183 fsumsplit 11370 sumsplitdc 11395 bezoutlema 11954 pcadd 12293 pcmpt 12295 cosmpi 13531 sinppi 13532 sinhalfpip 13535 trilpolemlt1 14073 |
Copyright terms: Public domain | W3C validator |