![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid1d | GIF version |
Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
addid1d | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addid1 8095 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 (class class class)co 5875 ℂcc 7809 0cc0 7811 + caddc 7814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7919 |
This theorem is referenced by: subsub2 8185 negsub 8205 ltaddneg 8381 ltaddpos 8409 addge01 8429 add20 8431 apreap 8544 nnge1 8942 nnnn0addcl 9206 un0addcl 9209 peano2z 9289 zaddcl 9293 uzaddcl 9586 xaddid1 9862 fzosubel3 10196 expadd 10562 faclbnd6 10724 omgadd 10782 reim0b 10871 rereb 10872 immul2 10889 resqrexlemcalc3 11025 resqrexlemnm 11027 max0addsup 11228 fsumsplit 11415 sumsplitdc 11440 bezoutlema 12000 pcadd 12339 pcmpt 12341 mulgnn0dir 13013 cosmpi 14240 sinppi 14241 sinhalfpip 14244 trilpolemlt1 14792 |
Copyright terms: Public domain | W3C validator |