Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid1d | GIF version |
Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
addid1d | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addid1 8036 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 0cc0 7753 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 7861 |
This theorem is referenced by: subsub2 8126 negsub 8146 ltaddneg 8322 ltaddpos 8350 addge01 8370 add20 8372 apreap 8485 nnge1 8880 nnnn0addcl 9144 un0addcl 9147 peano2z 9227 zaddcl 9231 uzaddcl 9524 xaddid1 9798 fzosubel3 10131 expadd 10497 faclbnd6 10657 omgadd 10715 reim0b 10804 rereb 10805 immul2 10822 resqrexlemcalc3 10958 resqrexlemnm 10960 max0addsup 11161 fsumsplit 11348 sumsplitdc 11373 bezoutlema 11932 pcadd 12271 pcmpt 12273 cosmpi 13387 sinppi 13388 sinhalfpip 13391 trilpolemlt1 13930 |
Copyright terms: Public domain | W3C validator |