ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1d GIF version

Theorem addid1d 7782
Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
muld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
addid1d (𝜑 → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1d
StepHypRef Expression
1 muld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addid1 7771 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2syl 14 1 (𝜑 → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  (class class class)co 5706  cc 7498  0cc0 7500   + caddc 7503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-0id 7603
This theorem is referenced by:  subsub2  7861  negsub  7881  ltaddneg  8053  ltaddpos  8081  addge01  8101  add20  8103  apreap  8215  nnge1  8601  nnnn0addcl  8859  un0addcl  8862  peano2z  8942  zaddcl  8946  uzaddcl  9231  xaddid1  9486  fzosubel3  9814  expadd  10176  faclbnd6  10331  omgadd  10389  reim0b  10475  rereb  10476  immul2  10493  resqrexlemcalc3  10628  resqrexlemnm  10630  max0addsup  10831  fsumsplit  11015  sumsplitdc  11040  bezoutlema  11480  trilpolemlt1  12818
  Copyright terms: Public domain W3C validator