| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlid | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addlid | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8037 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | addcom 8182 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴)) |
| 4 | addrid 8183 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 5 | 3, 4 | eqtr3d 2231 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-addcom 7998 ax-i2m1 8003 ax-0id 8006 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: readdcan 8185 addlidi 8188 addlidd 8195 cnegexlem1 8220 cnegexlem2 8221 addcan 8225 negneg 8295 fz0to4untppr 10218 fzoaddel2 10288 divfl0 10405 modqid 10460 sumrbdclem 11561 summodclem2a 11565 fisum0diag2 11631 eftlub 11874 gcdid 12180 cncrng 14203 ptolemy 15146 |
| Copyright terms: Public domain | W3C validator |