![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlid | GIF version |
Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addlid | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8011 | . . 3 ⊢ 0 ∈ ℂ | |
2 | addcom 8156 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴)) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴)) |
4 | addrid 8157 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
5 | 3, 4 | eqtr3d 2228 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 0cc0 7872 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-addcom 7972 ax-i2m1 7977 ax-0id 7980 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: readdcan 8159 addid2i 8162 addlidd 8169 cnegexlem1 8194 cnegexlem2 8195 addcan 8199 negneg 8269 fz0to4untppr 10190 fzoaddel2 10260 divfl0 10365 modqid 10420 sumrbdclem 11520 summodclem2a 11524 fisum0diag2 11590 eftlub 11833 gcdid 12123 cncrng 14057 ptolemy 14959 |
Copyright terms: Public domain | W3C validator |