| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlid | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addlid | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8106 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | addcom 8251 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴)) |
| 4 | addrid 8252 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 5 | 3, 4 | eqtr3d 2244 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 0cc0 7967 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 ax-ext 2191 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-addcom 8067 ax-i2m1 8072 ax-0id 8075 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: readdcan 8254 addlidi 8257 addlidd 8264 cnegexlem1 8289 cnegexlem2 8290 addcan 8294 negneg 8364 fz0to4untppr 10288 fzo0addel 10361 fzoaddel2 10363 divfl0 10483 modqid 10538 swrdspsleq 11165 swrds1 11166 sumrbdclem 11854 summodclem2a 11858 fisum0diag2 11924 eftlub 12167 gcdid 12473 cncrng 14498 ptolemy 15463 |
| Copyright terms: Public domain | W3C validator |