![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlid | GIF version |
Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addlid | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8013 | . . 3 ⊢ 0 ∈ ℂ | |
2 | addcom 8158 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴)) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴)) |
4 | addrid 8159 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
5 | 3, 4 | eqtr3d 2228 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 0cc0 7874 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-addcom 7974 ax-i2m1 7979 ax-0id 7982 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: readdcan 8161 addid2i 8164 addlidd 8171 cnegexlem1 8196 cnegexlem2 8197 addcan 8201 negneg 8271 fz0to4untppr 10193 fzoaddel2 10263 divfl0 10368 modqid 10423 sumrbdclem 11523 summodclem2a 11527 fisum0diag2 11593 eftlub 11836 gcdid 12126 cncrng 14068 ptolemy 15000 |
Copyright terms: Public domain | W3C validator |