| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlid | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addlid | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8146 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | addcom 8291 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴)) |
| 4 | addrid 8292 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 5 | 3, 4 | eqtr3d 2264 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-addcom 8107 ax-i2m1 8112 ax-0id 8115 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: readdcan 8294 addlidi 8297 addlidd 8304 cnegexlem1 8329 cnegexlem2 8330 addcan 8334 negneg 8404 fz0to4untppr 10328 fzo0addel 10402 fzoaddel2 10404 divfl0 10524 modqid 10579 swrdspsleq 11207 swrds1 11208 sumrbdclem 11896 summodclem2a 11900 fisum0diag2 11966 eftlub 12209 gcdid 12515 cncrng 14541 ptolemy 15506 |
| Copyright terms: Public domain | W3C validator |