Step | Hyp | Ref
| Expression |
1 | | eqid 2170 |
. 2
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
2 | | isumrb.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
3 | | eluzelz 9485 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
4 | 2, 3 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℤ) |
5 | | seqex 10392 |
. . 3
⊢ seq𝑀( + , 𝐹) ∈ V |
6 | 5 | a1i 9 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ V) |
7 | | eqid 2170 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
8 | | eluzel2 9481 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
9 | 2, 8 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
10 | | eluzelz 9485 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
11 | 10 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℤ) |
12 | | iftrue 3530 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
13 | 12 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
14 | | isummo.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
15 | 13, 14 | eqeltrd 2247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
16 | 15 | ex 114 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
17 | 16 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
18 | | iffalse 3533 |
. . . . . . . . 9
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 0) |
19 | | 0cn 7901 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
20 | 18, 19 | eqeltrdi 2261 |
. . . . . . . 8
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
21 | 20 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (¬ 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
22 | | isummo.dc |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴) |
23 | | exmiddc 831 |
. . . . . . . 8
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
24 | 22, 23 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
25 | 17, 21, 24 | mpjaod 713 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
26 | | isummo.1 |
. . . . . . 7
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
27 | 26 | fvmpt2 5577 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
28 | 11, 25, 27 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
29 | 28, 25 | eqeltrd 2247 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
30 | 7, 9, 29 | serf 10419 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶ℂ) |
31 | 30, 2 | ffvelrnd 5630 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
32 | | addid1 8046 |
. . . . 5
⊢ (𝑚 ∈ ℂ → (𝑚 + 0) = 𝑚) |
33 | 32 | adantl 275 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 + 0) = 𝑚) |
34 | 2 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
35 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ (ℤ≥‘𝑁)) |
36 | 31 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
37 | | elfzuz 9966 |
. . . . . 6
⊢ (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) |
38 | | eluzelz 9485 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘(𝑁 + 1)) → 𝑚 ∈ ℤ) |
39 | 38 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑚 ∈
ℤ) |
40 | | fisumcvg.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) |
41 | 40 | sseld 3146 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑚 ∈ 𝐴 → 𝑚 ∈ (𝑀...𝑁))) |
42 | | fznuz 10047 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) |
43 | 41, 42 | syl6 33 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑚 ∈ 𝐴 → ¬ 𝑚 ∈ (ℤ≥‘(𝑁 + 1)))) |
44 | 43 | con2d 619 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ (ℤ≥‘(𝑁 + 1)) → ¬ 𝑚 ∈ 𝐴)) |
45 | 44 | imp 123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) → ¬ 𝑚 ∈ 𝐴) |
46 | 39, 45 | eldifd 3131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴)) |
47 | | fveqeq2 5503 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) = 0 ↔ (𝐹‘𝑚) = 0)) |
48 | | eldifi 3249 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ) |
49 | | eldifn 3250 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘 ∈ 𝐴) |
50 | 49, 18 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) = 0) |
51 | 50, 19 | eqeltrdi 2261 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
52 | 48, 51, 27 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
53 | 52, 50 | eqtrd 2203 |
. . . . . . . 8
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑘) = 0) |
54 | 47, 53 | vtoclga 2796 |
. . . . . . 7
⊢ (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑚) = 0) |
55 | 46, 54 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑚) = 0) |
56 | 37, 55 | sylan2 284 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹‘𝑚) = 0) |
57 | 56 | adantlr 474 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹‘𝑚) = 0) |
58 | | fveq2 5494 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
59 | 58 | eleq1d 2239 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
60 | 29 | ralrimiva 2543 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
61 | 60 | ad2antrr 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
62 | | simpr 109 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
63 | 59, 61, 62 | rspcdva 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑚) ∈ ℂ) |
64 | | addcl 7888 |
. . . . 5
⊢ ((𝑚 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑚 + 𝑧) ∈ ℂ) |
65 | 64 | adantl 275 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ (𝑚 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑚 + 𝑧) ∈ ℂ) |
66 | 33, 34, 35, 36, 57, 63, 65 | seq3id2 10454 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑛)) |
67 | 66 | eqcomd 2176 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)) |
68 | 1, 4, 6, 31, 67 | climconst 11242 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |