Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3cvg GIF version

Theorem fsum3cvg 11154
 Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummo.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
isumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
fisumcvg.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fsum3cvg (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀   𝑘,𝐹
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsum3cvg
Dummy variables 𝑛 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . 2 (ℤ𝑁) = (ℤ𝑁)
2 isumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 9342 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 14 . 2 (𝜑𝑁 ∈ ℤ)
5 seqex 10227 . . 3 seq𝑀( + , 𝐹) ∈ V
65a1i 9 . 2 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
7 eqid 2139 . . . 4 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 9338 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
92, 8syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
10 eluzelz 9342 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1110adantl 275 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℤ)
12 iftrue 3479 . . . . . . . . . . 11 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
1312adantl 275 . . . . . . . . . 10 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
14 isummo.2 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1513, 14eqeltrd 2216 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1615ex 114 . . . . . . . 8 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
1716adantr 274 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
18 iffalse 3482 . . . . . . . . 9 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
19 0cn 7765 . . . . . . . . 9 0 ∈ ℂ
2018, 19eqeltrdi 2230 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2120a1i 9 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (¬ 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
22 isummo.dc . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
23 exmiddc 821 . . . . . . . 8 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2422, 23syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
2517, 21, 24mpjaod 707 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
26 isummo.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
2726fvmpt2 5504 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
2811, 25, 27syl2anc 408 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
2928, 25eqeltrd 2216 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
307, 9, 29serf 10254 . . 3 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℂ)
3130, 2ffvelrnd 5556 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
32 addid1 7907 . . . . 5 (𝑚 ∈ ℂ → (𝑚 + 0) = 𝑚)
3332adantl 275 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 + 0) = 𝑚)
342adantr 274 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
35 simpr 109 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
3631adantr 274 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
37 elfzuz 9809 . . . . . 6 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
38 eluzelz 9342 . . . . . . . . 9 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → 𝑚 ∈ ℤ)
3938adantl 275 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ ℤ)
40 fisumcvg.4 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (𝑀...𝑁))
4140sseld 3096 . . . . . . . . . . 11 (𝜑 → (𝑚𝐴𝑚 ∈ (𝑀...𝑁)))
42 fznuz 9889 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1)))
4341, 42syl6 33 . . . . . . . . . 10 (𝜑 → (𝑚𝐴 → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1))))
4443con2d 613 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ‘(𝑁 + 1)) → ¬ 𝑚𝐴))
4544imp 123 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑚𝐴)
4639, 45eldifd 3081 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴))
47 fveqeq2 5430 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) = 0 ↔ (𝐹𝑚) = 0))
48 eldifi 3198 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
49 eldifn 3199 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
5049, 18syl 14 . . . . . . . . . . 11 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
5150, 19eqeltrdi 2230 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
5248, 51, 27syl2anc 408 . . . . . . . . 9 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
5352, 50eqtrd 2172 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 0)
5447, 53vtoclga 2752 . . . . . . 7 (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹𝑚) = 0)
5546, 54syl 14 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑚) = 0)
5637, 55sylan2 284 . . . . 5 ((𝜑𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 0)
5756adantlr 468 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 0)
58 fveq2 5421 . . . . . 6 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
5958eleq1d 2208 . . . . 5 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
6029ralrimiva 2505 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
6160ad2antrr 479 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
62 simpr 109 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
6359, 61, 62rspcdva 2794 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑀)) → (𝐹𝑚) ∈ ℂ)
64 addcl 7752 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑚 + 𝑧) ∈ ℂ)
6564adantl 275 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ (𝑚 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑚 + 𝑧) ∈ ℂ)
6633, 34, 35, 36, 57, 63, 65seq3id2 10289 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑛))
6766eqcomd 2145 . 2 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
681, 4, 6, 31, 67climconst 11066 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ∨ wo 697  DECID wdc 819   = wceq 1331   ∈ wcel 1480  ∀wral 2416  Vcvv 2686   ∖ cdif 3068   ⊆ wss 3071  ifcif 3474   class class class wbr 3929   ↦ cmpt 3989  ‘cfv 5123  (class class class)co 5774  ℂcc 7625  0cc0 7627  1c1 7628   + caddc 7630  ℤcz 9061  ℤ≥cuz 9333  ...cfz 9797  seqcseq 10225   ⇝ cli 11054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449  df-fz 9798  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-rsqrt 10777  df-abs 10778  df-clim 11055 This theorem is referenced by:  summodclem2a  11157  fsum3cvg2  11170
 Copyright terms: Public domain W3C validator