ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval3 GIF version

Theorem shftval3 10226
Description: Value of a sequence shifted by 𝐴𝐵. (Contributed by NM, 20-Jul-2005.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftval3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘𝐴) = (𝐹𝐵))

Proof of Theorem shftval3
StepHypRef Expression
1 0cn 7459 . . 3 0 ∈ ℂ
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftval2 10225 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘(𝐴 + 0)) = (𝐹‘(𝐵 + 0)))
41, 3mp3an3 1262 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘(𝐴 + 0)) = (𝐹‘(𝐵 + 0)))
5 addid1 7599 . . . 4 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
65adantr 270 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴)
76fveq2d 5293 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘(𝐴 + 0)) = ((𝐹 shift (𝐴𝐵))‘𝐴))
8 addid1 7599 . . . 4 (𝐵 ∈ ℂ → (𝐵 + 0) = 𝐵)
98adantl 271 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 0) = 𝐵)
109fveq2d 5293 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹‘(𝐵 + 0)) = (𝐹𝐵))
114, 7, 103eqtr3d 2128 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘𝐴) = (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  Vcvv 2619  cfv 5002  (class class class)co 5634  cc 7327  0cc0 7329   + caddc 7332  cmin 7632   shift cshi 10213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-resscn 7416  ax-1cn 7417  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-sub 7634  df-shft 10214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator