![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > shftval3 | GIF version |
Description: Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftval3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7978 | . . 3 ⊢ 0 ∈ ℂ | |
2 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
3 | 2 | shftval2 10866 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 0)) = (𝐹‘(𝐵 + 0))) |
4 | 1, 3 | mp3an3 1337 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 0)) = (𝐹‘(𝐵 + 0))) |
5 | addrid 8124 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
6 | 5 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
7 | 6 | fveq2d 5538 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 0)) = ((𝐹 shift (𝐴 − 𝐵))‘𝐴)) |
8 | addrid 8124 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 + 0) = 𝐵) | |
9 | 8 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 0) = 𝐵) |
10 | 9 | fveq2d 5538 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹‘(𝐵 + 0)) = (𝐹‘𝐵)) |
11 | 4, 7, 10 | 3eqtr3d 2230 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ‘cfv 5235 (class class class)co 5895 ℂcc 7838 0cc0 7840 + caddc 7843 − cmin 8157 shift cshi 10854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-resscn 7932 ax-1cn 7933 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-distr 7944 ax-i2m1 7945 ax-0id 7948 ax-rnegex 7949 ax-cnre 7951 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-sub 8159 df-shft 10855 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |