HomeHome Intuitionistic Logic Explorer
Theorem List (p. 81 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-addf 8001 Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 8004 should be used. Note that uses of ax-addf 8001 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) in place of +, from which this axiom (with the defined operation in place of +) follows as a theorem.

This axiom is justified by Theorem axaddf 7935. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

+ :(ℂ × ℂ)⟶ℂ
 
Axiomax-mulf 8002 Multiplication is an operation on the complex numbers. This axiom tells us that · is defined only on complex numbers which is analogous to the way that other operations are defined, for example see subf 8228 or eff 11828. However, while Metamath can handle this axiom, if we wish to work with weaker complex number axioms, we can avoid it by using the less specific mulcl 8006. Note that uses of ax-mulf 8002 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of ·, as seen in mpomulf 8016.

This axiom is justified by Theorem axmulf 7936. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

· :(ℂ × ℂ)⟶ℂ
 
4.2  Derive the basic properties from the field axioms
 
4.2.1  Some deductions from the field axioms for complex numbers
 
Theoremcnex 8003 Alias for ax-cnex 7970. (Contributed by Mario Carneiro, 17-Nov-2014.)
ℂ ∈ V
 
Theoremaddcl 8004 Alias for ax-addcl 7975, for naming consistency with addcli 8030. Use this theorem instead of ax-addcl 7975 or axaddcl 7931. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
 
Theoremreaddcl 8005 Alias for ax-addrcl 7976, for naming consistency with readdcli 8039. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremmulcl 8006 Alias for ax-mulcl 7977, for naming consistency with mulcli 8031. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
 
Theoremremulcl 8007 Alias for ax-mulrcl 7978, for naming consistency with remulcli 8040. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
 
Theoremmulcom 8008 Alias for ax-mulcom 7980, for naming consistency with mulcomi 8032. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaddass 8009 Alias for ax-addass 7981, for naming consistency with addassi 8034. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremmulass 8010 Alias for ax-mulass 7982, for naming consistency with mulassi 8035. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremadddi 8011 Alias for ax-distr 7983, for naming consistency with adddii 8036. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremrecn 8012 A real number is a complex number. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
 
Theoremreex 8013 The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.)
ℝ ∈ V
 
Theoremreelprrecn 8014 Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
ℝ ∈ {ℝ, ℂ}
 
Theoremcnelprrecn 8015 Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
ℂ ∈ {ℝ, ℂ}
 
Theoremmpomulf 8016* Multiplication is an operation on complex numbers. Version of ax-mulf 8002 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7977. (Contributed by GG, 16-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
 
Theoremadddir 8017 Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theorem0cn 8018 0 is a complex number. (Contributed by NM, 19-Feb-2005.)
0 ∈ ℂ
 
Theorem0cnd 8019 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 0 ∈ ℂ)
 
Theoremc0ex 8020 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ∈ V
 
Theorem1ex 8021 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
1 ∈ V
 
Theoremcnre 8022* Alias for ax-cnre 7990, for naming consistency. (Contributed by NM, 3-Jan-2013.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremmulrid 8023 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
 
Theoremmullid 8024 Identity law for multiplication. Note: see mulrid 8023 for commuted version. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
 
Theorem1re 8025 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.)
1 ∈ ℝ
 
Theorem0re 8026 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.)
0 ∈ ℝ
 
Theorem0red 8027 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 0 ∈ ℝ)
 
Theoremmulridi 8028 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ ℂ       (𝐴 · 1) = 𝐴
 
Theoremmullidi 8029 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ ℂ       (1 · 𝐴) = 𝐴
 
Theoremaddcli 8030 Closure law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + 𝐵) ∈ ℂ
 
Theoremmulcli 8031 Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · 𝐵) ∈ ℂ
 
Theoremmulcomi 8032 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · 𝐵) = (𝐵 · 𝐴)
 
Theoremmulcomli 8033 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   (𝐴 · 𝐵) = 𝐶       (𝐵 · 𝐴) = 𝐶
 
Theoremaddassi 8034 Associative law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
 
Theoremmulassi 8035 Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
 
Theoremadddii 8036 Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))
 
Theoremadddiri 8037 Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))
 
Theoremrecni 8038 A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
𝐴 ∈ ℝ       𝐴 ∈ ℂ
 
Theoremreaddcli 8039 Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 + 𝐵) ∈ ℝ
 
Theoremremulcli 8040 Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 · 𝐵) ∈ ℝ
 
Theorem1red 8041 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 1 ∈ ℝ)
 
Theorem1cnd 8042 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 1 ∈ ℂ)
 
Theoremmulridd 8043 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 1) = 𝐴)
 
Theoremmullidd 8044 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1 · 𝐴) = 𝐴)
 
Theoremmulid2d 8045 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1 · 𝐴) = 𝐴)
 
Theoremaddcld 8046 Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
 
Theoremmulcld 8047 Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
 
Theoremmulcomd 8048 Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaddassd 8049 Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremmulassd 8050 Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremadddid 8051 Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremadddird 8052 Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theoremadddirp1d 8053 Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))
 
Theoremjoinlmuladdmuld 8054 Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)       (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
 
Theoremrecnd 8055 Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℂ)
 
Theoremreaddcld 8056 Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremremulcld 8057 Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
 
4.2.2  Infinity and the extended real number system
 
Syntaxcpnf 8058 Plus infinity.
class +∞
 
Syntaxcmnf 8059 Minus infinity.
class -∞
 
Syntaxcxr 8060 The set of extended reals (includes plus and minus infinity).
class *
 
Syntaxclt 8061 'Less than' predicate (extended to include the extended reals).
class <
 
Syntaxcle 8062 Extend wff notation to include the 'less than or equal to' relation.
class
 
Definitiondf-pnf 8063 Define plus infinity. Note that the definition is arbitrary, requiring only that +∞ be a set not in and different from -∞ (df-mnf 8064). We use 𝒫 to make it independent of the construction of , and Cantor's Theorem will show that it is different from any member of and therefore . See pnfnre 8068 and mnfnre 8069, and we'll also be able to prove +∞ ≠ -∞.

A simpler possibility is to define +∞ as and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of . (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)

+∞ = 𝒫
 
Definitiondf-mnf 8064 Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in and different from +∞ (see mnfnre 8069). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)
-∞ = 𝒫 +∞
 
Definitiondf-xr 8065 Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.)
* = (ℝ ∪ {+∞, -∞})
 
Definitiondf-ltxr 8066* Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, < is primitive and not necessarily a relation on . (Contributed by NM, 13-Oct-2005.)
< = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
 
Definitiondf-le 8067 Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.)
≤ = ((ℝ* × ℝ*) ∖ < )
 
Theorempnfnre 8068 Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
+∞ ∉ ℝ
 
Theoremmnfnre 8069 Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
-∞ ∉ ℝ
 
Theoremressxr 8070 The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
ℝ ⊆ ℝ*
 
Theoremrexpssxrxp 8071 The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(ℝ × ℝ) ⊆ (ℝ* × ℝ*)
 
Theoremrexr 8072 A standard real is an extended real. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
 
Theorem0xr 8073 Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.)
0 ∈ ℝ*
 
Theoremrenepnf 8074 No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(𝐴 ∈ ℝ → 𝐴 ≠ +∞)
 
Theoremrenemnf 8075 No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(𝐴 ∈ ℝ → 𝐴 ≠ -∞)
 
Theoremrexrd 8076 A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℝ*)
 
Theoremrenepnfd 8077 No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≠ +∞)
 
Theoremrenemnfd 8078 No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≠ -∞)
 
Theorempnfxr 8079 Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.)
+∞ ∈ ℝ*
 
Theorempnfex 8080 Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
+∞ ∈ V
 
Theorempnfnemnf 8081 Plus and minus infinity are different elements of *. (Contributed by NM, 14-Oct-2005.)
+∞ ≠ -∞
 
Theoremmnfnepnf 8082 Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
-∞ ≠ +∞
 
Theoremmnfxr 8083 Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
-∞ ∈ ℝ*
 
Theoremrexri 8084 A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
𝐴 ∈ ℝ       𝐴 ∈ ℝ*
 
Theorem1xr 8085 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
1 ∈ ℝ*
 
Theoremrenfdisj 8086 The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(ℝ ∩ {+∞, -∞}) = ∅
 
Theoremltrelxr 8087 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
< ⊆ (ℝ* × ℝ*)
 
Theoremltrel 8088 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
Rel <
 
Theoremlerelxr 8089 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
≤ ⊆ (ℝ* × ℝ*)
 
Theoremlerel 8090 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Rel ≤
 
Theoremxrlenlt 8091 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltxrlt 8092 The standard less-than < and the extended real less-than < are identical when restricted to the non-extended reals . (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
 
4.2.3  Restate the ordering postulates with extended real "less than"
 
Theoremaxltirr 8093 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 7991 with ordering on the extended reals. New proofs should use ltnr 8103 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Theoremaxltwlin 8094 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 7992 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremaxlttrn 8095 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-lttrn 7993 with ordering on the extended reals. New proofs should use lttr 8100 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremaxltadd 8096 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 7995 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremaxapti 8097 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 7994 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
 
Theoremaxmulgt0 8098 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7996 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
 
Theoremaxsuploc 8099* An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 8000 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
4.2.4  Ordering on reals
 
Theoremlttr 8100 Alias for axlttrn 8095, for naming consistency with lttri 8131. New proofs should generally use this instead of ax-pre-lttrn 7993. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >