| Intuitionistic Logic Explorer Theorem List (p. 81 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | suplocsrlemb 8001* | Lemma for suplocsr 8004. The set 𝐵 is located. (Contributed by Jim Kingdon, 18-Jan-2024.) |
| ⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ P ∀𝑣 ∈ P (𝑢<P 𝑣 → (∃𝑞 ∈ 𝐵 𝑢<P 𝑞 ∨ ∀𝑞 ∈ 𝐵 𝑞<P 𝑣))) | ||
| Theorem | suplocsrlempr 8002* | Lemma for suplocsr 8004. The set 𝐵 has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.) |
| ⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ P (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) | ||
| Theorem | suplocsrlem 8003* | Lemma for suplocsr 8004. The set 𝐴 has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.) |
| ⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ (𝜑 → 𝐴 ⊆ R) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
| Theorem | suplocsr 8004* | An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.) |
| ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
| Syntax | cc 8005 | Class of complex numbers. |
| class ℂ | ||
| Syntax | cr 8006 | Class of real numbers. |
| class ℝ | ||
| Syntax | cc0 8007 | Extend class notation to include the complex number 0. |
| class 0 | ||
| Syntax | c1 8008 | Extend class notation to include the complex number 1. |
| class 1 | ||
| Syntax | ci 8009 | Extend class notation to include the complex number i. |
| class i | ||
| Syntax | caddc 8010 | Addition on complex numbers. |
| class + | ||
| Syntax | cltrr 8011 | 'Less than' predicate (defined over real subset of complex numbers). |
| class <ℝ | ||
| Syntax | cmul 8012 | Multiplication on complex numbers. The token · is a center dot. |
| class · | ||
| Definition | df-c 8013 | Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ ℂ = (R × R) | ||
| Definition | df-0 8014 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) |
| ⊢ 0 = 〈0R, 0R〉 | ||
| Definition | df-1 8015 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) |
| ⊢ 1 = 〈1R, 0R〉 | ||
| Definition | df-i 8016 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) |
| ⊢ i = 〈0R, 1R〉 | ||
| Definition | df-r 8017 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ ℝ = (R × {0R}) | ||
| Definition | df-add 8018* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) |
| ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
| Definition | df-mul 8019* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) |
| ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
| Definition | df-lt 8020* | Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
| Theorem | opelcn 8021 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) |
| ⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
| Theorem | opelreal 8022 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
| Theorem | elreal 8023* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) |
| ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
| Theorem | elrealeu 8024* | The real number mapping in elreal 8023 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.) |
| ⊢ (𝐴 ∈ ℝ ↔ ∃!𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
| Theorem | elreal2 8025 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) |
| ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
| Theorem | 0ncn 8026 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 8027 which is a related property. (Contributed by NM, 2-May-1996.) |
| ⊢ ¬ ∅ ∈ ℂ | ||
| Theorem | cnm 8027* | A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | ltrelre 8028 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
| ⊢ <ℝ ⊆ (ℝ × ℝ) | ||
| Theorem | addcnsr 8029 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
| Theorem | mulcnsr 8030 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
| Theorem | eqresr 8031 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
| Theorem | addresr 8032 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
| Theorem | mulresr 8033 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
| ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
| Theorem | ltresr 8034 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
| ⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
| Theorem | ltresr2 8035 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
| Theorem | dfcnqs 8036 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6755, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 8013), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
| ⊢ ℂ = ((R × R) / ◡ E ) | ||
| Theorem | addcnsrec 8037 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 8036 and mulcnsrec 8038. (Contributed by NM, 13-Aug-1995.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
| Theorem | mulcnsrec 8038 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6754, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 8036. (Contributed by NM, 13-Aug-1995.) |
| ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
| Theorem | addvalex 8039 | Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 8132. (Contributed by Jim Kingdon, 14-Jul-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 + 𝐵) ∈ V) | ||
| Theorem | pitonnlem1 8040* | Lemma for pitonn 8043. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.) |
| ⊢ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈1o, 1o〉] ~Q }, {𝑢 ∣ [〈1o, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 = 1 | ||
| Theorem | pitonnlem1p1 8041 | Lemma for pitonn 8043. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| ⊢ (𝐴 ∈ P → [〈(𝐴 +P (1P +P 1P)), (1P +P 1P)〉] ~R = [〈(𝐴 +P 1P), 1P〉] ~R ) | ||
| Theorem | pitonnlem2 8042* | Lemma for pitonn 8043. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.) |
| ⊢ (𝐾 ∈ N → (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 + 1) = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈(𝐾 +N 1o), 1o〉] ~Q }, {𝑢 ∣ [〈(𝐾 +N 1o), 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
| Theorem | pitonn 8043* | Mapping from N to ℕ. (Contributed by Jim Kingdon, 22-Apr-2020.) |
| ⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | ||
| Theorem | pitoregt0 8044* | Embedding from N to ℝ yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.) |
| ⊢ (𝑁 ∈ N → 0 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
| Theorem | pitore 8045* | Embedding from N to ℝ. Similar to pitonn 8043 but separate in the sense that we have not proved nnssre 9122 yet. (Contributed by Jim Kingdon, 15-Jul-2021.) |
| ⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) | ||
| Theorem | recnnre 8046* | Embedding the reciprocal of a natural number into ℝ. (Contributed by Jim Kingdon, 15-Jul-2021.) |
| ⊢ (𝑁 ∈ N → 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 ∈ ℝ) | ||
| Theorem | peano1nnnn 8047* | One is an element of ℕ. This is a counterpart to 1nn 9129 designed for real number axioms which involve natural numbers (notably, axcaucvg 8095). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ 1 ∈ 𝑁 | ||
| Theorem | peano2nnnn 8048* | A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 9130 designed for real number axioms which involve to natural numbers (notably, axcaucvg 8095). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) | ||
| Theorem | ltrennb 8049* | Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 13-Jul-2021.) |
| ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) | ||
| Theorem | ltrenn 8050* | Ordering of natural numbers with <N or <ℝ. (Contributed by Jim Kingdon, 12-Jul-2021.) |
| ⊢ (𝐽 <N 𝐾 → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 <ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐾, 1o〉] ~Q }, {𝑢 ∣ [〈𝐾, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
| Theorem | recidpipr 8051* | Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.) |
| ⊢ (𝑁 ∈ N → (〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 ·P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉) = 1P) | ||
| Theorem | recidpirqlemcalc 8052 | Lemma for recidpirq 8053. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → (𝐴 ·P 𝐵) = 1P) ⇒ ⊢ (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P))) | ||
| Theorem | recidpirq 8053* | A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.) |
| ⊢ (𝑁 ∈ N → (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 · 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 1) | ||
| Theorem | axcnex 8054 | The complex numbers form a set. Use cnex 8131 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ ℂ ∈ V | ||
| Theorem | axresscn 8055 | The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 8099. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
| ⊢ ℝ ⊆ ℂ | ||
| Theorem | ax1cn 8056 | 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 8100. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
| ⊢ 1 ∈ ℂ | ||
| Theorem | ax1re 8057 |
1 is a real number. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly; instead, use ax-1re 8101.
In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 8100 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.) |
| ⊢ 1 ∈ ℝ | ||
| Theorem | axicn 8058 | i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 8102. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
| ⊢ i ∈ ℂ | ||
| Theorem | axaddcl 8059 | Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 8103 be used later. Instead, in most cases use addcl 8132. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | axaddrcl 8060 | Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 8104 be used later. Instead, in most cases use readdcl 8133. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | axmulcl 8061 | Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 8105 be used later. Instead, in most cases use mulcl 8134. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | axmulrcl 8062 | Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 8106 be used later. Instead, in most cases use remulcl 8135. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | axaddf 8063 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 8059. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 8129. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axmulf 8064 | Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 8130 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 8134. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | axaddcom 8065 |
Addition commutes. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly, nor should the proven axiom ax-addcom 8107 be used later.
Instead, use addcom 8291.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | axmulcom 8066 | Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 8108 be used later. Instead, use mulcom 8136. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | axaddass 8067 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 8109 be used later. Instead, use addass 8137. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | axmulass 8068 | Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 8110. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | axdistr 8069 | Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 8111 be used later. Instead, use adddi 8139. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | axi2m1 8070 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8112. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Theorem | ax0lt1 8071 |
0 is less than 1. Axiom for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly; instead, use ax-0lt1 8113.
The version of this axiom in the Metamath Proof Explorer reads 1 ≠ 0; here we change it to 0 <ℝ 1. The proof of 0 <ℝ 1 from 1 ≠ 0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
| ⊢ 0 <ℝ 1 | ||
| Theorem | ax1rid 8072 | 1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 8114. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Theorem | ax0id 8073 |
0 is an identity element for real addition. Axiom for
real and
complex numbers, derived from set theory. This construction-dependent
theorem should not be referenced directly; instead, use ax-0id 8115.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Theorem | axrnegex 8074* | Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 8116. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Theorem | axprecex 8075* |
Existence of positive reciprocal of positive real number. Axiom for
real and complex numbers, derived from set theory. This
construction-dependent theorem should not be referenced directly;
instead, use ax-precex 8117.
In treatments which assume excluded middle, the 0 <ℝ 𝐴 condition is generally replaced by 𝐴 ≠ 0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
| Theorem | axcnre 8076* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 8118. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | axpre-ltirr 8077 | Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 8119. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | ||
| Theorem | axpre-ltwlin 8078 | Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 8120. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | ||
| Theorem | axpre-lttrn 8079 | Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 8121. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Theorem | axpre-apti 8080 |
Apartness of reals is tight. Axiom for real and complex numbers,
derived from set theory. This construction-dependent theorem should not
be referenced directly; instead, use ax-pre-apti 8122.
(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) | ||
| Theorem | axpre-ltadd 8081 | Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 8123. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Theorem | axpre-mulgt0 8082 | The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 8124. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Theorem | axpre-mulext 8083 |
Strong extensionality of multiplication (expressed in terms of
<ℝ). Axiom for real and
complex numbers, derived from set theory.
This construction-dependent theorem should not be referenced directly;
instead, use ax-pre-mulext 8125.
(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Theorem | rereceu 8084* | The reciprocal from axprecex 8075 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Theorem | recriota 8085* | Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.) |
| ⊢ (𝑁 ∈ N → (℩𝑟 ∈ ℝ (〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑁, 1o〉] ~Q }, {𝑢 ∣ [〈𝑁, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 · 𝑟) = 1) = 〈[〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑁, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑁, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) | ||
| Theorem | axarch 8086* |
Archimedean axiom. The Archimedean property is more naturally stated
once we have defined ℕ. Unless we find
another way to state it,
we'll just use the right hand side of dfnn2 9120 in stating what we mean by
"natural number" in the context of this axiom.
This construction-dependent theorem should not be referenced directly; instead, use ax-arch 8126. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | ||
| Theorem | peano5nnnn 8087* | Peano's inductive postulate. This is a counterpart to peano5nni 9121 designed for real number axioms which involve natural numbers (notably, axcaucvg 8095). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ ((1 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁 ⊆ 𝐴) | ||
| Theorem | nnindnn 8088* | Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9134 designed for real number axioms which involve natural numbers (notably, axcaucvg 8095). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝑧 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑧 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈ 𝑁 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ 𝑁 → 𝜏) | ||
| Theorem | nntopi 8089* | Mapping from ℕ to N. (Contributed by Jim Kingdon, 13-Jul-2021.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑁 → ∃𝑧 ∈ N 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑧, 1o〉] ~Q }, {𝑢 ∣ [〈𝑧, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 = 𝐴) | ||
| Theorem | axcaucvglemcl 8090* | Lemma for axcaucvg 8095. Mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉) ∈ R) | ||
| Theorem | axcaucvglemf 8091* | Lemma for axcaucvg 8095. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → 𝐺:N⟶R) | ||
| Theorem | axcaucvglemval 8092* | Lemma for axcaucvg 8095. Value of sequence when mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝐽, 1o〉] ~Q }, {𝑢 ∣ [〈𝐽, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈(𝐺‘𝐽), 0R〉) | ||
| Theorem | axcaucvglemcau 8093* | Lemma for axcaucvg 8095. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | ||
| Theorem | axcaucvglemres 8094* | Lemma for axcaucvg 8095. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) & ⊢ 𝐺 = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
| Theorem | axcaucvg 8095* |
Real number completeness axiom. A Cauchy sequence with a modulus of
convergence converges. This is basically Corollary 11.2.13 of [HoTT],
p. (varies). The HoTT book theorem has a modulus of convergence
(that is, a rate of convergence) specified by (11.2.9) in HoTT whereas
this theorem fixes the rate of convergence to say that all terms after
the nth term must be within 1 / 𝑛 of the nth term (it should later
be able to prove versions of this theorem with a different fixed rate
or a modulus of convergence supplied as a hypothesis).
Because we are stating this axiom before we have introduced notations for ℕ or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of ℩. This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 8127. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
| Theorem | axpre-suploclemres 8096* | Lemma for axpre-suploc 8097. The result. The proof just needs to define 𝐵 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ℝ), and apply suplocsr 8004. (Contributed by Jim Kingdon, 24-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦))) & ⊢ 𝐵 = {𝑤 ∈ R ∣ 〈𝑤, 0R〉 ∈ 𝐴} ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Theorem | axpre-suploc 8097* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8128. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-cnex 8098 | The complex numbers form a set. Proofs should normally use cnex 8131 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℂ ∈ V | ||
| Axiom | ax-resscn 8099 | The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 8055. (Contributed by NM, 1-Mar-1995.) |
| ⊢ ℝ ⊆ ℂ | ||
| Axiom | ax-1cn 8100 | 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 8056. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 1 ∈ ℂ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |