| Intuitionistic Logic Explorer Theorem List (p. 81 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Axiom | ax-i2m1 8001 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7959. (Contributed by NM, 29-Jan-1995.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Axiom | ax-0lt1 8002 | 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7960. Proofs should normally use 0lt1 8170 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ 0 <ℝ 1 | ||
| Axiom | ax-1rid 8003 | 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7961. (Contributed by NM, 29-Jan-1995.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Axiom | ax-0id 8004 |
0 is an identity element for real addition. Axiom for
real and
complex numbers, justified by Theorem ax0id 7962.
Proofs should normally use addrid 8181 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Axiom | ax-rnegex 8005* | Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7963. (Contributed by Eric Schmidt, 21-May-2007.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Axiom | ax-precex 8006* | Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7964. (Contributed by Jim Kingdon, 6-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
| Axiom | ax-cnre 8007* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7965. For naming consistency, use cnre 8039 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Axiom | ax-pre-ltirr 8008 | Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 8008. (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | ||
| Axiom | ax-pre-ltwlin 8009 | Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7967. (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | ||
| Axiom | ax-pre-lttrn 8010 | Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7968. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Axiom | ax-pre-apti 8011 | Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7969. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) | ||
| Axiom | ax-pre-ltadd 8012 | Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7970. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Axiom | ax-pre-mulgt0 8013 | The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7971. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Axiom | ax-pre-mulext 8014 |
Strong extensionality of multiplication (expressed in terms of <ℝ).
Axiom for real and complex numbers, justified by Theorem axpre-mulext 7972
(Contributed by Jim Kingdon, 18-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Axiom | ax-arch 8015* |
Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for
real and complex numbers, justified by Theorem axarch 7975.
This axiom should not be used directly; instead use arch 9263 (which is the same, but stated in terms of ℕ and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | ||
| Axiom | ax-caucvg 8016* |
Completeness. Axiom for real and complex numbers, justified by Theorem
axcaucvg 7984.
A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. This axiom should not be used directly; instead use caucvgre 11163 (which is the same, but stated in terms of the ℕ and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
| Axiom | ax-pre-suploc 8017* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. Although this and ax-caucvg 8016 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 8016. (Contributed by Jim Kingdon, 23-Jan-2024.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-addf 8018 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first- or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 8021 should be used. Note that uses of ax-addf 8018 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 7952. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Axiom | ax-mulf 8019 |
Multiplication is an operation on the complex numbers. This axiom tells
us that · is defined only on complex
numbers which is analogous to
the way that other operations are defined, for example see subf 8245
or
eff 11845. However, while Metamath can handle this
axiom, if we wish to work
with weaker complex number axioms, we can avoid it by using the less
specific mulcl 8023. Note that uses of ax-mulf 8019 can be eliminated by using
the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of
·, as seen in mpomulf 8033.
This axiom is justified by Theorem axmulf 7953. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | cnex 8020 | Alias for ax-cnex 7987. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℂ ∈ V | ||
| Theorem | addcl 8021 | Alias for ax-addcl 7992, for naming consistency with addcli 8047. Use this theorem instead of ax-addcl 7992 or axaddcl 7948. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | readdcl 8022 | Alias for ax-addrcl 7993, for naming consistency with readdcli 8056. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | mulcl 8023 | Alias for ax-mulcl 7994, for naming consistency with mulcli 8048. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | remulcl 8024 | Alias for ax-mulrcl 7995, for naming consistency with remulcli 8057. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | mulcom 8025 | Alias for ax-mulcom 7997, for naming consistency with mulcomi 8049. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addass 8026 | Alias for ax-addass 7998, for naming consistency with addassi 8051. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulass 8027 | Alias for ax-mulass 7999, for naming consistency with mulassi 8052. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddi 8028 | Alias for ax-distr 8000, for naming consistency with adddii 8053. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | recn 8029 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | ||
| Theorem | reex 8030 | The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℝ ∈ V | ||
| Theorem | reelprrecn 8031 | Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℝ ∈ {ℝ, ℂ} | ||
| Theorem | cnelprrecn 8032 | Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℂ ∈ {ℝ, ℂ} | ||
| Theorem | mpomulf 8033* | Multiplication is an operation on complex numbers. Version of ax-mulf 8019 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7994. (Contributed by GG, 16-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | adddir 8034 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | 0cn 8035 | 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnd 8036 | 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℂ) | ||
| Theorem | c0ex 8037 | 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ∈ V | ||
| Theorem | 1ex 8038 | 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 1 ∈ V | ||
| Theorem | cnre 8039* | Alias for ax-cnre 8007, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | mulrid 8040 | 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullid 8041 | Identity law for multiplication. Note: see mulrid 8040 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | 1re 8042 | 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| ⊢ 1 ∈ ℝ | ||
| Theorem | 0re 8043 | 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 0 ∈ ℝ | ||
| Theorem | 0red 8044 | 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℝ) | ||
| Theorem | mulridi 8045 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 1) = 𝐴 | ||
| Theorem | mullidi 8046 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (1 · 𝐴) = 𝐴 | ||
| Theorem | addcli 8047 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℂ | ||
| Theorem | mulcli 8048 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℂ | ||
| Theorem | mulcomi 8049 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
| Theorem | mulcomli 8050 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (𝐵 · 𝐴) = 𝐶 | ||
| Theorem | addassi 8051 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
| Theorem | mulassi 8052 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
| Theorem | adddii 8053 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
| Theorem | adddiri 8054 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
| Theorem | recni 8055 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | readdcli 8056 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
| Theorem | remulcli 8057 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
| Theorem | 1red 8058 | 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℝ) | ||
| Theorem | 1cnd 8059 | 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℂ) | ||
| Theorem | mulridd 8060 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullidd 8061 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | mulid2d 8062 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | addcld 8063 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | mulcld 8064 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | mulcomd 8065 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addassd 8066 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulassd 8067 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddid 8068 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | adddird 8069 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | adddirp1d 8070 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) | ||
| Theorem | joinlmuladdmuld 8071 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) | ||
| Theorem | recnd 8072 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | readdcld 8073 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | remulcld 8074 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | ||
| Syntax | cpnf 8075 | Plus infinity. |
| class +∞ | ||
| Syntax | cmnf 8076 | Minus infinity. |
| class -∞ | ||
| Syntax | cxr 8077 | The set of extended reals (includes plus and minus infinity). |
| class ℝ* | ||
| Syntax | clt 8078 | 'Less than' predicate (extended to include the extended reals). |
| class < | ||
| Syntax | cle 8079 | Extend wff notation to include the 'less than or equal to' relation. |
| class ≤ | ||
| Definition | df-pnf 8080 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that +∞ be a set not in ℝ and different from -∞
(df-mnf 8081). We use 𝒫 ∪ ℂ to make it independent of the
construction of ℂ, and Cantor's Theorem will
show that it is
different from any member of ℂ and therefore
ℝ. See pnfnre 8085
and mnfnre 8086, and we'll also be able to prove +∞ ≠ -∞.
A simpler possibility is to define +∞ as ℂ and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ +∞ = 𝒫 ∪ ℂ | ||
| Definition | df-mnf 8081 | Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 8086). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ -∞ = 𝒫 +∞ | ||
| Definition | df-xr 8082 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | ||
| Definition | df-ltxr 8083* | Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.) |
| ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) | ||
| Definition | df-le 8084 | Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | ||
| Theorem | pnfnre 8085 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ +∞ ∉ ℝ | ||
| Theorem | mnfnre 8086 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ -∞ ∉ ℝ | ||
| Theorem | ressxr 8087 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ℝ ⊆ ℝ* | ||
| Theorem | rexpssxrxp 8088 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | ||
| Theorem | rexr 8089 | A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | ||
| Theorem | 0xr 8090 | Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 0 ∈ ℝ* | ||
| Theorem | renepnf 8091 | No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | ||
| Theorem | renemnf 8092 | No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | ||
| Theorem | rexrd 8093 | A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
| Theorem | renepnfd 8094 | No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
| Theorem | renemnfd 8095 | No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ -∞) | ||
| Theorem | pnfxr 8096 | Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| ⊢ +∞ ∈ ℝ* | ||
| Theorem | pnfex 8097 | Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ +∞ ∈ V | ||
| Theorem | pnfnemnf 8098 | Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
| ⊢ +∞ ≠ -∞ | ||
| Theorem | mnfnepnf 8099 | Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -∞ ≠ +∞ | ||
| Theorem | mnfxr 8100 | Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ -∞ ∈ ℝ* | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |