HomeHome Intuitionistic Logic Explorer
Theorem List (p. 81 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempitonnlem1p1 8001 Lemma for pitonn 8003. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴P → [⟨(𝐴 +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
Theorempitonnlem2 8002* Lemma for pitonn 8003. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
(𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theorempitonn 8003* Mapping from N to . (Contributed by Jim Kingdon, 22-Apr-2020.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
 
Theorempitoregt0 8004* Embedding from N to yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → 0 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theorempitore 8005* Embedding from N to . Similar to pitonn 8003 but separate in the sense that we have not proved nnssre 9082 yet. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
 
Theoremrecnnre 8006* Embedding the reciprocal of a natural number into . (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
 
Theorempeano1nnnn 8007* One is an element of . This is a counterpart to 1nn 9089 designed for real number axioms which involve natural numbers (notably, axcaucvg 8055). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       1 ∈ 𝑁
 
Theorempeano2nnnn 8008* A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 9090 designed for real number axioms which involve to natural numbers (notably, axcaucvg 8055). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       (𝐴𝑁 → (𝐴 + 1) ∈ 𝑁)
 
Theoremltrennb 8009* Ordering of natural numbers with <N or <. (Contributed by Jim Kingdon, 13-Jul-2021.)
((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
 
Theoremltrenn 8010* Ordering of natural numbers with <N or <. (Contributed by Jim Kingdon, 12-Jul-2021.)
(𝐽 <N 𝐾 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theoremrecidpipr 8011* Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
(𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩) = 1P)
 
Theoremrecidpirqlemcalc 8012 Lemma for recidpirq 8013. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑 → (𝐴 ·P 𝐵) = 1P)       (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))
 
Theoremrecidpirq 8013* A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
 
4.1.2  Final derivation of real and complex number postulates
 
Theoremaxcnex 8014 The complex numbers form a set. Use cnex 8091 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
ℂ ∈ V
 
Theoremaxresscn 8015 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 8059. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
ℝ ⊆ ℂ
 
Theoremax1cn 8016 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 8060. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.)
1 ∈ ℂ
 
Theoremax1re 8017 1 is a real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1re 8061.

In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 8060 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)

1 ∈ ℝ
 
Theoremaxicn 8018 i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 8062. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
i ∈ ℂ
 
Theoremaxaddcl 8019 Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 8063 be used later. Instead, in most cases use addcl 8092. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
 
Theoremaxaddrcl 8020 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 8064 be used later. Instead, in most cases use readdcl 8093. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremaxmulcl 8021 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 8065 be used later. Instead, in most cases use mulcl 8094. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
 
Theoremaxmulrcl 8022 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 8066 be used later. Instead, in most cases use remulcl 8095. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
 
Theoremaxaddf 8023 Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 8019. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 8089. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
+ :(ℂ × ℂ)⟶ℂ
 
Theoremaxmulf 8024 Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 8090 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 8094. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
· :(ℂ × ℂ)⟶ℂ
 
Theoremaxaddcom 8025 Addition commutes. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcom 8067 be used later. Instead, use addcom 8251.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.)

((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremaxmulcom 8026 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 8068 be used later. Instead, use mulcom 8096. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaxaddass 8027 Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 8069 be used later. Instead, use addass 8097. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremaxmulass 8028 Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 8070. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremaxdistr 8029 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 8071 be used later. Instead, use adddi 8099. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremaxi2m1 8030 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8072. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
((i · i) + 1) = 0
 
Theoremax0lt1 8031 0 is less than 1. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0lt1 8073.

The version of this axiom in the Metamath Proof Explorer reads 1 ≠ 0; here we change it to 0 < 1. The proof of 0 < 1 from 1 ≠ 0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)

0 < 1
 
Theoremax1rid 8032 1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 8074. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
 
Theoremax0id 8033 0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 8075.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Theoremaxrnegex 8034* Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 8076. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
 
Theoremaxprecex 8035* Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 8077.

In treatments which assume excluded middle, the 0 < 𝐴 condition is generally replaced by 𝐴 ≠ 0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
 
Theoremaxcnre 8036* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 8078. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremaxpre-ltirr 8037 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 8079. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Theoremaxpre-ltwlin 8038 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 8080. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremaxpre-lttrn 8039 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 8081. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremaxpre-apti 8040 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 8082.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
 
Theoremaxpre-ltadd 8041 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 8083. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Theoremaxpre-mulgt0 8042 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 8084. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
 
Theoremaxpre-mulext 8043 Strong extensionality of multiplication (expressed in terms of <). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 8085.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremrereceu 8044* The reciprocal from axprecex 8035 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
 
Theoremrecriota 8045* Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
(𝑁N → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
Theoremaxarch 8046* Archimedean axiom. The Archimedean property is more naturally stated once we have defined . Unless we find another way to state it, we'll just use the right hand side of dfnn2 9080 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 8086. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
 
Theorempeano5nnnn 8047* Peano's inductive postulate. This is a counterpart to peano5nni 9081 designed for real number axioms which involve natural numbers (notably, axcaucvg 8055). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
 
Theoremnnindnn 8048* Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9094 designed for real number axioms which involve natural numbers (notably, axcaucvg 8055). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝑧 = 1 → (𝜑𝜓))    &   (𝑧 = 𝑘 → (𝜑𝜒))    &   (𝑧 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑧 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑘𝑁 → (𝜒𝜃))       (𝐴𝑁𝜏)
 
Theoremnntopi 8049* Mapping from to N. (Contributed by Jim Kingdon, 13-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       (𝐴𝑁 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴)
 
Theoremaxcaucvglemcl 8050* Lemma for axcaucvg 8055. Mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)       ((𝜑𝐽N) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) ∈ R)
 
Theoremaxcaucvglemf 8051* Lemma for axcaucvg 8055. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       (𝜑𝐺:NR)
 
Theoremaxcaucvglemval 8052* Lemma for axcaucvg 8055. Value of sequence when mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       ((𝜑𝐽N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝐽), 0R⟩)
 
Theoremaxcaucvglemcau 8053* Lemma for axcaucvg 8055. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
 
Theoremaxcaucvglemres 8054* Lemma for axcaucvg 8055. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
 
Theoremaxcaucvg 8055* Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of .

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 8087. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
 
Theoremaxpre-suploclemres 8056* Lemma for axpre-suploc 8057. The result. The proof just needs to define 𝐵 as basically the same set as 𝐴 (but expressed as a subset of R rather than a subset of ), and apply suplocsr 7964. (Contributed by Jim Kingdon, 24-Jan-2024.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)    &   (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))    &   𝐵 = {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴}       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremaxpre-suploc 8057* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8088. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
4.1.3  Real and complex number postulates restated as axioms
 
Axiomax-cnex 8058 The complex numbers form a set. Proofs should normally use cnex 8091 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.)
ℂ ∈ V
 
Axiomax-resscn 8059 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 8015. (Contributed by NM, 1-Mar-1995.)
ℝ ⊆ ℂ
 
Axiomax-1cn 8060 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 8016. (Contributed by NM, 1-Mar-1995.)
1 ∈ ℂ
 
Axiomax-1re 8061 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 8017. Proofs should use 1re 8113 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)
1 ∈ ℝ
 
Axiomax-icn 8062 i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 8018. (Contributed by NM, 1-Mar-1995.)
i ∈ ℂ
 
Axiomax-addcl 8063 Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 8019. Proofs should normally use addcl 8092 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
 
Axiomax-addrcl 8064 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 8020. Proofs should normally use readdcl 8093 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
 
Axiomax-mulcl 8065 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 8021. Proofs should normally use mulcl 8094 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
 
Axiomax-mulrcl 8066 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 8022. Proofs should normally use remulcl 8095 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
 
Axiomax-addcom 8067 Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 8025. Proofs should normally use addcom 8251 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Axiomax-mulcom 8068 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8026. Proofs should normally use mulcom 8096 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Axiomax-addass 8069 Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8027. Proofs should normally use addass 8097 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Axiomax-mulass 8070 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 8028. Proofs should normally use mulass 8098 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Axiomax-distr 8071 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 8029. Proofs should normally use adddi 8099 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Axiomax-i2m1 8072 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 8030. (Contributed by NM, 29-Jan-1995.)
((i · i) + 1) = 0
 
Axiomax-0lt1 8073 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 8031. Proofs should normally use 0lt1 8241 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.)
0 < 1
 
Axiomax-1rid 8074 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 8032. (Contributed by NM, 29-Jan-1995.)
(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
 
Axiomax-0id 8075 0 is an identity element for real addition. Axiom for real and complex numbers, justified by Theorem ax0id 8033.

Proofs should normally use addrid 8252 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.)

(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Axiomax-rnegex 8076* Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 8034. (Contributed by Eric Schmidt, 21-May-2007.)
(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
 
Axiomax-precex 8077* Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 8035. (Contributed by Jim Kingdon, 6-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
 
Axiomax-cnre 8078* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 8036. For naming consistency, use cnre 8110 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Axiomax-pre-ltirr 8079 Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 8079. (Contributed by Jim Kingdon, 12-Jan-2020.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Axiomax-pre-ltwlin 8080 Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 8038. (Contributed by Jim Kingdon, 12-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
 
Axiomax-pre-lttrn 8081 Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 8039. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Axiomax-pre-apti 8082 Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 8040. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
 
Axiomax-pre-ltadd 8083 Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 8041. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Axiomax-pre-mulgt0 8084 The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 8042. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
 
Axiomax-pre-mulext 8085 Strong extensionality of multiplication (expressed in terms of <). Axiom for real and complex numbers, justified by Theorem axpre-mulext 8043

(Contributed by Jim Kingdon, 18-Feb-2020.)

((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
 
Axiomax-arch 8086* Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for real and complex numbers, justified by Theorem axarch 8046.

This axiom should not be used directly; instead use arch 9334 (which is the same, but stated in terms of and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
 
Axiomax-caucvg 8087* Completeness. Axiom for real and complex numbers, justified by Theorem axcaucvg 8055.

A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

This axiom should not be used directly; instead use caucvgre 11458 (which is the same, but stated in terms of the and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.)

𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
 
Axiomax-pre-suploc 8088* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

Although this and ax-caucvg 8087 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 8087.

(Contributed by Jim Kingdon, 23-Jan-2024.)

(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Axiomax-addf 8089 Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 8092 should be used. Note that uses of ax-addf 8089 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) in place of +, from which this axiom (with the defined operation in place of +) follows as a theorem.

This axiom is justified by Theorem axaddf 8023. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

+ :(ℂ × ℂ)⟶ℂ
 
Axiomax-mulf 8090 Multiplication is an operation on the complex numbers. This axiom tells us that · is defined only on complex numbers which is analogous to the way that other operations are defined, for example see subf 8316 or eff 12140. However, while Metamath can handle this axiom, if we wish to work with weaker complex number axioms, we can avoid it by using the less specific mulcl 8094. Note that uses of ax-mulf 8090 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of ·, as seen in mpomulf 8104.

This axiom is justified by Theorem axmulf 8024. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

· :(ℂ × ℂ)⟶ℂ
 
4.2  Derive the basic properties from the field axioms
 
4.2.1  Some deductions from the field axioms for complex numbers
 
Theoremcnex 8091 Alias for ax-cnex 8058. (Contributed by Mario Carneiro, 17-Nov-2014.)
ℂ ∈ V
 
Theoremaddcl 8092 Alias for ax-addcl 8063, for naming consistency with addcli 8118. Use this theorem instead of ax-addcl 8063 or axaddcl 8019. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
 
Theoremreaddcl 8093 Alias for ax-addrcl 8064, for naming consistency with readdcli 8127. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremmulcl 8094 Alias for ax-mulcl 8065, for naming consistency with mulcli 8119. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
 
Theoremremulcl 8095 Alias for ax-mulrcl 8066, for naming consistency with remulcli 8128. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
 
Theoremmulcom 8096 Alias for ax-mulcom 8068, for naming consistency with mulcomi 8120. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaddass 8097 Alias for ax-addass 8069, for naming consistency with addassi 8122. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremmulass 8098 Alias for ax-mulass 8070, for naming consistency with mulassi 8123. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremadddi 8099 Alias for ax-distr 8071, for naming consistency with adddii 8124. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremrecn 8100 A real number is a complex number. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >