| Intuitionistic Logic Explorer Theorem List (p. 81 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Axiom | ax-mulass 8001 | Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7959. Proofs should normally use mulass 8029 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Axiom | ax-distr 8002 | Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7960. Proofs should normally use adddi 8030 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Axiom | ax-i2m1 8003 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7961. (Contributed by NM, 29-Jan-1995.) |
| ⊢ ((i · i) + 1) = 0 | ||
| Axiom | ax-0lt1 8004 | 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7962. Proofs should normally use 0lt1 8172 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ 0 <ℝ 1 | ||
| Axiom | ax-1rid 8005 | 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7963. (Contributed by NM, 29-Jan-1995.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
| Axiom | ax-0id 8006 |
0 is an identity element for real addition. Axiom for
real and
complex numbers, justified by Theorem ax0id 7964.
Proofs should normally use addrid 8183 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Axiom | ax-rnegex 8007* | Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7965. (Contributed by Eric Schmidt, 21-May-2007.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
| Axiom | ax-precex 8008* | Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7966. (Contributed by Jim Kingdon, 6-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
| Axiom | ax-cnre 8009* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7967. For naming consistency, use cnre 8041 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Axiom | ax-pre-ltirr 8010 | Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 8010. (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 <ℝ 𝐴) | ||
| Axiom | ax-pre-ltwlin 8011 | Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7969. (Contributed by Jim Kingdon, 12-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐴 <ℝ 𝐶 ∨ 𝐶 <ℝ 𝐵))) | ||
| Axiom | ax-pre-lttrn 8012 | Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7970. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Axiom | ax-pre-apti 8013 | Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7971. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴)) → 𝐴 = 𝐵) | ||
| Axiom | ax-pre-ltadd 8014 | Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7972. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Axiom | ax-pre-mulgt0 8015 | The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7973. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Axiom | ax-pre-mulext 8016 |
Strong extensionality of multiplication (expressed in terms of <ℝ).
Axiom for real and complex numbers, justified by Theorem axpre-mulext 7974
(Contributed by Jim Kingdon, 18-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) <ℝ (𝐵 · 𝐶) → (𝐴 <ℝ 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Axiom | ax-arch 8017* |
Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for
real and complex numbers, justified by Theorem axarch 7977.
This axiom should not be used directly; instead use arch 9265 (which is the same, but stated in terms of ℕ and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | ||
| Axiom | ax-caucvg 8018* |
Completeness. Axiom for real and complex numbers, justified by Theorem
axcaucvg 7986.
A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. This axiom should not be used directly; instead use caucvgre 11165 (which is the same, but stated in terms of the ℕ and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.) |
| ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} & ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) | ||
| Axiom | ax-pre-suploc 8019* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound. Although this and ax-caucvg 8018 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 8018. (Contributed by Jim Kingdon, 23-Jan-2024.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥 ∈ 𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 <ℝ 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <ℝ 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <ℝ 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-addf 8020 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first- or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 8023 should be used. Note that uses of ax-addf 8020 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 7954. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Axiom | ax-mulf 8021 |
Multiplication is an operation on the complex numbers. This axiom tells
us that · is defined only on complex
numbers which is analogous to
the way that other operations are defined, for example see subf 8247
or
eff 11847. However, while Metamath can handle this
axiom, if we wish to work
with weaker complex number axioms, we can avoid it by using the less
specific mulcl 8025. Note that uses of ax-mulf 8021 can be eliminated by using
the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of
·, as seen in mpomulf 8035.
This axiom is justified by Theorem axmulf 7955. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | cnex 8022 | Alias for ax-cnex 7989. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℂ ∈ V | ||
| Theorem | addcl 8023 | Alias for ax-addcl 7994, for naming consistency with addcli 8049. Use this theorem instead of ax-addcl 7994 or axaddcl 7950. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | readdcl 8024 | Alias for ax-addrcl 7995, for naming consistency with readdcli 8058. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | mulcl 8025 | Alias for ax-mulcl 7996, for naming consistency with mulcli 8050. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | remulcl 8026 | Alias for ax-mulrcl 7997, for naming consistency with remulcli 8059. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | mulcom 8027 | Alias for ax-mulcom 7999, for naming consistency with mulcomi 8051. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addass 8028 | Alias for ax-addass 8000, for naming consistency with addassi 8053. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulass 8029 | Alias for ax-mulass 8001, for naming consistency with mulassi 8054. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddi 8030 | Alias for ax-distr 8002, for naming consistency with adddii 8055. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | recn 8031 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | ||
| Theorem | reex 8032 | The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℝ ∈ V | ||
| Theorem | reelprrecn 8033 | Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℝ ∈ {ℝ, ℂ} | ||
| Theorem | cnelprrecn 8034 | Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℂ ∈ {ℝ, ℂ} | ||
| Theorem | mpomulf 8035* | Multiplication is an operation on complex numbers. Version of ax-mulf 8021 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7996. (Contributed by GG, 16-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | adddir 8036 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | 0cn 8037 | 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnd 8038 | 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℂ) | ||
| Theorem | c0ex 8039 | 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ∈ V | ||
| Theorem | 1ex 8040 | 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 1 ∈ V | ||
| Theorem | cnre 8041* | Alias for ax-cnre 8009, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | mulrid 8042 | 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullid 8043 | Identity law for multiplication. Note: see mulrid 8042 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | 1re 8044 | 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| ⊢ 1 ∈ ℝ | ||
| Theorem | 0re 8045 | 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 0 ∈ ℝ | ||
| Theorem | 0red 8046 | 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℝ) | ||
| Theorem | mulridi 8047 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 1) = 𝐴 | ||
| Theorem | mullidi 8048 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (1 · 𝐴) = 𝐴 | ||
| Theorem | addcli 8049 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℂ | ||
| Theorem | mulcli 8050 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℂ | ||
| Theorem | mulcomi 8051 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
| Theorem | mulcomli 8052 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (𝐵 · 𝐴) = 𝐶 | ||
| Theorem | addassi 8053 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
| Theorem | mulassi 8054 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
| Theorem | adddii 8055 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
| Theorem | adddiri 8056 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
| Theorem | recni 8057 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | readdcli 8058 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
| Theorem | remulcli 8059 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
| Theorem | 1red 8060 | 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℝ) | ||
| Theorem | 1cnd 8061 | 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℂ) | ||
| Theorem | mulridd 8062 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullidd 8063 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | mulid2d 8064 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | addcld 8065 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | mulcld 8066 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | mulcomd 8067 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addassd 8068 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulassd 8069 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddid 8070 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | adddird 8071 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | adddirp1d 8072 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) | ||
| Theorem | joinlmuladdmuld 8073 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) | ||
| Theorem | recnd 8074 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | readdcld 8075 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | remulcld 8076 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | ||
| Syntax | cpnf 8077 | Plus infinity. |
| class +∞ | ||
| Syntax | cmnf 8078 | Minus infinity. |
| class -∞ | ||
| Syntax | cxr 8079 | The set of extended reals (includes plus and minus infinity). |
| class ℝ* | ||
| Syntax | clt 8080 | 'Less than' predicate (extended to include the extended reals). |
| class < | ||
| Syntax | cle 8081 | Extend wff notation to include the 'less than or equal to' relation. |
| class ≤ | ||
| Definition | df-pnf 8082 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that +∞ be a set not in ℝ and different from -∞
(df-mnf 8083). We use 𝒫 ∪ ℂ to make it independent of the
construction of ℂ, and Cantor's Theorem will
show that it is
different from any member of ℂ and therefore
ℝ. See pnfnre 8087
and mnfnre 8088, and we'll also be able to prove +∞ ≠ -∞.
A simpler possibility is to define +∞ as ℂ and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ +∞ = 𝒫 ∪ ℂ | ||
| Definition | df-mnf 8083 | Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 8088). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ -∞ = 𝒫 +∞ | ||
| Definition | df-xr 8084 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | ||
| Definition | df-ltxr 8085* | Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.) |
| ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) | ||
| Definition | df-le 8086 | Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | ||
| Theorem | pnfnre 8087 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ +∞ ∉ ℝ | ||
| Theorem | mnfnre 8088 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ -∞ ∉ ℝ | ||
| Theorem | ressxr 8089 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ℝ ⊆ ℝ* | ||
| Theorem | rexpssxrxp 8090 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | ||
| Theorem | rexr 8091 | A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | ||
| Theorem | 0xr 8092 | Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 0 ∈ ℝ* | ||
| Theorem | renepnf 8093 | No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | ||
| Theorem | renemnf 8094 | No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | ||
| Theorem | rexrd 8095 | A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
| Theorem | renepnfd 8096 | No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
| Theorem | renemnfd 8097 | No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ -∞) | ||
| Theorem | pnfxr 8098 | Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| ⊢ +∞ ∈ ℝ* | ||
| Theorem | pnfex 8099 | Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ +∞ ∈ V | ||
| Theorem | pnfnemnf 8100 | Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
| ⊢ +∞ ≠ -∞ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |