HomeHome Intuitionistic Logic Explorer
Theorem List (p. 81 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8001-8100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-mulass 8001 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7959. Proofs should normally use mulass 8029 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Axiomax-distr 8002 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7960. Proofs should normally use adddi 8030 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Axiomax-i2m1 8003 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7961. (Contributed by NM, 29-Jan-1995.)
((i · i) + 1) = 0
 
Axiomax-0lt1 8004 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7962. Proofs should normally use 0lt1 8172 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.)
0 < 1
 
Axiomax-1rid 8005 1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7963. (Contributed by NM, 29-Jan-1995.)
(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
 
Axiomax-0id 8006 0 is an identity element for real addition. Axiom for real and complex numbers, justified by Theorem ax0id 7964.

Proofs should normally use addrid 8183 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.)

(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Axiomax-rnegex 8007* Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7965. (Contributed by Eric Schmidt, 21-May-2007.)
(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
 
Axiomax-precex 8008* Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7966. (Contributed by Jim Kingdon, 6-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
 
Axiomax-cnre 8009* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7967. For naming consistency, use cnre 8041 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Axiomax-pre-ltirr 8010 Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 8010. (Contributed by Jim Kingdon, 12-Jan-2020.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Axiomax-pre-ltwlin 8011 Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7969. (Contributed by Jim Kingdon, 12-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
 
Axiomax-pre-lttrn 8012 Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7970. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Axiomax-pre-apti 8013 Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7971. (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
 
Axiomax-pre-ltadd 8014 Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7972. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
 
Axiomax-pre-mulgt0 8015 The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7973. (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
 
Axiomax-pre-mulext 8016 Strong extensionality of multiplication (expressed in terms of <). Axiom for real and complex numbers, justified by Theorem axpre-mulext 7974

(Contributed by Jim Kingdon, 18-Feb-2020.)

((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → (𝐴 < 𝐵𝐵 < 𝐴)))
 
Axiomax-arch 8017* Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for real and complex numbers, justified by Theorem axarch 7977.

This axiom should not be used directly; instead use arch 9265 (which is the same, but stated in terms of and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
 
Axiomax-caucvg 8018* Completeness. Axiom for real and complex numbers, justified by Theorem axcaucvg 7986.

A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

This axiom should not be used directly; instead use caucvgre 11165 (which is the same, but stated in terms of the and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.)

𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
 
Axiomax-pre-suploc 8019* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

Although this and ax-caucvg 8018 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 8018.

(Contributed by Jim Kingdon, 23-Jan-2024.)

(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Axiomax-addf 8020 Addition is an operation on the complex numbers. This deprecated axiom is provided for historical compatibility but is not a bona fide axiom for complex numbers (independent of set theory) since it cannot be interpreted as a first- or second-order statement (see https://us.metamath.org/downloads/schmidt-cnaxioms.pdf). It may be deleted in the future and should be avoided for new theorems. Instead, the less specific addcl 8023 should be used. Note that uses of ax-addf 8020 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) in place of +, from which this axiom (with the defined operation in place of +) follows as a theorem.

This axiom is justified by Theorem axaddf 7954. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

+ :(ℂ × ℂ)⟶ℂ
 
Axiomax-mulf 8021 Multiplication is an operation on the complex numbers. This axiom tells us that · is defined only on complex numbers which is analogous to the way that other operations are defined, for example see subf 8247 or eff 11847. However, while Metamath can handle this axiom, if we wish to work with weaker complex number axioms, we can avoid it by using the less specific mulcl 8025. Note that uses of ax-mulf 8021 can be eliminated by using the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of ·, as seen in mpomulf 8035.

This axiom is justified by Theorem axmulf 7955. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.)

· :(ℂ × ℂ)⟶ℂ
 
4.2  Derive the basic properties from the field axioms
 
4.2.1  Some deductions from the field axioms for complex numbers
 
Theoremcnex 8022 Alias for ax-cnex 7989. (Contributed by Mario Carneiro, 17-Nov-2014.)
ℂ ∈ V
 
Theoremaddcl 8023 Alias for ax-addcl 7994, for naming consistency with addcli 8049. Use this theorem instead of ax-addcl 7994 or axaddcl 7950. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
 
Theoremreaddcl 8024 Alias for ax-addrcl 7995, for naming consistency with readdcli 8058. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremmulcl 8025 Alias for ax-mulcl 7996, for naming consistency with mulcli 8050. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
 
Theoremremulcl 8026 Alias for ax-mulrcl 7997, for naming consistency with remulcli 8059. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
 
Theoremmulcom 8027 Alias for ax-mulcom 7999, for naming consistency with mulcomi 8051. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaddass 8028 Alias for ax-addass 8000, for naming consistency with addassi 8053. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremmulass 8029 Alias for ax-mulass 8001, for naming consistency with mulassi 8054. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremadddi 8030 Alias for ax-distr 8002, for naming consistency with adddii 8055. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremrecn 8031 A real number is a complex number. (Contributed by NM, 10-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
 
Theoremreex 8032 The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.)
ℝ ∈ V
 
Theoremreelprrecn 8033 Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
ℝ ∈ {ℝ, ℂ}
 
Theoremcnelprrecn 8034 Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
ℂ ∈ {ℝ, ℂ}
 
Theoremmpomulf 8035* Multiplication is an operation on complex numbers. Version of ax-mulf 8021 using maps-to notation, proved from the axioms of set theory and ax-mulcl 7996. (Contributed by GG, 16-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
 
Theoremadddir 8036 Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theorem0cn 8037 0 is a complex number. (Contributed by NM, 19-Feb-2005.)
0 ∈ ℂ
 
Theorem0cnd 8038 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 0 ∈ ℂ)
 
Theoremc0ex 8039 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
0 ∈ V
 
Theorem1ex 8040 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
1 ∈ V
 
Theoremcnre 8041* Alias for ax-cnre 8009, for naming consistency. (Contributed by NM, 3-Jan-2013.)
(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremmulrid 8042 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
 
Theoremmullid 8043 Identity law for multiplication. Note: see mulrid 8042 for commuted version. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
 
Theorem1re 8044 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.)
1 ∈ ℝ
 
Theorem0re 8045 0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.)
0 ∈ ℝ
 
Theorem0red 8046 0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 0 ∈ ℝ)
 
Theoremmulridi 8047 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ ℂ       (𝐴 · 1) = 𝐴
 
Theoremmullidi 8048 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
𝐴 ∈ ℂ       (1 · 𝐴) = 𝐴
 
Theoremaddcli 8049 Closure law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + 𝐵) ∈ ℂ
 
Theoremmulcli 8050 Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · 𝐵) ∈ ℂ
 
Theoremmulcomi 8051 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 · 𝐵) = (𝐵 · 𝐴)
 
Theoremmulcomli 8052 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   (𝐴 · 𝐵) = 𝐶       (𝐵 · 𝐴) = 𝐶
 
Theoremaddassi 8053 Associative law for addition. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
 
Theoremmulassi 8054 Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
 
Theoremadddii 8055 Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))
 
Theoremadddiri 8056 Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))
 
Theoremrecni 8057 A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
𝐴 ∈ ℝ       𝐴 ∈ ℂ
 
Theoremreaddcli 8058 Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 + 𝐵) ∈ ℝ
 
Theoremremulcli 8059 Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 · 𝐵) ∈ ℝ
 
Theorem1red 8060 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 1 ∈ ℝ)
 
Theorem1cnd 8061 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(𝜑 → 1 ∈ ℂ)
 
Theoremmulridd 8062 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 · 1) = 𝐴)
 
Theoremmullidd 8063 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1 · 𝐴) = 𝐴)
 
Theoremmulid2d 8064 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1 · 𝐴) = 𝐴)
 
Theoremaddcld 8065 Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
 
Theoremmulcld 8066 Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
 
Theoremmulcomd 8067 Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaddassd 8068 Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremmulassd 8069 Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
 
Theoremadddid 8070 Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
Theoremadddird 8071 Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theoremadddirp1d 8072 Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))
 
Theoremjoinlmuladdmuld 8073 Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷)       (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷)
 
Theoremrecnd 8074 Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℂ)
 
Theoremreaddcld 8075 Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
 
Theoremremulcld 8076 Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
 
4.2.2  Infinity and the extended real number system
 
Syntaxcpnf 8077 Plus infinity.
class +∞
 
Syntaxcmnf 8078 Minus infinity.
class -∞
 
Syntaxcxr 8079 The set of extended reals (includes plus and minus infinity).
class *
 
Syntaxclt 8080 'Less than' predicate (extended to include the extended reals).
class <
 
Syntaxcle 8081 Extend wff notation to include the 'less than or equal to' relation.
class
 
Definitiondf-pnf 8082 Define plus infinity. Note that the definition is arbitrary, requiring only that +∞ be a set not in and different from -∞ (df-mnf 8083). We use 𝒫 to make it independent of the construction of , and Cantor's Theorem will show that it is different from any member of and therefore . See pnfnre 8087 and mnfnre 8088, and we'll also be able to prove +∞ ≠ -∞.

A simpler possibility is to define +∞ as and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of . (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)

+∞ = 𝒫
 
Definitiondf-mnf 8083 Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in and different from +∞ (see mnfnre 8088). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)
-∞ = 𝒫 +∞
 
Definitiondf-xr 8084 Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.)
* = (ℝ ∪ {+∞, -∞})
 
Definitiondf-ltxr 8085* Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, < is primitive and not necessarily a relation on . (Contributed by NM, 13-Oct-2005.)
< = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
 
Definitiondf-le 8086 Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.)
≤ = ((ℝ* × ℝ*) ∖ < )
 
Theorempnfnre 8087 Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
+∞ ∉ ℝ
 
Theoremmnfnre 8088 Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
-∞ ∉ ℝ
 
Theoremressxr 8089 The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
ℝ ⊆ ℝ*
 
Theoremrexpssxrxp 8090 The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(ℝ × ℝ) ⊆ (ℝ* × ℝ*)
 
Theoremrexr 8091 A standard real is an extended real. (Contributed by NM, 14-Oct-2005.)
(𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
 
Theorem0xr 8092 Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.)
0 ∈ ℝ*
 
Theoremrenepnf 8093 No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(𝐴 ∈ ℝ → 𝐴 ≠ +∞)
 
Theoremrenemnf 8094 No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
(𝐴 ∈ ℝ → 𝐴 ≠ -∞)
 
Theoremrexrd 8095 A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℝ*)
 
Theoremrenepnfd 8096 No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≠ +∞)
 
Theoremrenemnfd 8097 No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≠ -∞)
 
Theorempnfxr 8098 Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.)
+∞ ∈ ℝ*
 
Theorempnfex 8099 Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
+∞ ∈ V
 
Theorempnfnemnf 8100 Plus and minus infinity are different elements of *. (Contributed by NM, 14-Oct-2005.)
+∞ ≠ -∞
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15819
  Copyright terms: Public domain < Previous  Next >