| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1533 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2223 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | ssalel 3212 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | ssalel 3212 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqssi 3240 eqssd 3241 sseq1 3247 sseq2 3248 eqimss 3278 ssrabeq 3311 uneqin 3455 ss0b 3531 vss 3539 sssnm 3831 unidif 3919 ssunieq 3920 iuneq1 3977 iuneq2 3980 iunxdif2 4013 ssext 4306 pweqb 4308 eqopab2b 4367 pwunim 4374 soeq2 4404 iunpw 4568 ordunisuc2r 4603 tfi 4671 eqrel 4805 eqrelrel 4817 coeq1 4876 coeq2 4877 cnveq 4893 dmeq 4920 relssres 5039 xp11m 5163 xpcanm 5164 xpcan2m 5165 ssrnres 5167 fnres 5436 eqfnfv3 5727 fneqeql2 5737 fconst4m 5852 f1imaeq 5892 eqoprab2b 6053 fo1stresm 6297 fo2ndresm 6298 nnacan 6648 nnmcan 6655 ixpeq2 6849 sbthlemi3 7114 wrdeq 11080 isprm2 12625 lssle0 14321 bastop1 14742 epttop 14749 opnneiid 14823 cnntr 14884 metequiv 15154 bj-sseq 16086 bdeq0 16160 bdvsn 16167 bdop 16168 bdeqsuc 16174 bj-om 16230 |
| Copyright terms: Public domain | W3C validator |