![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqss | GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1498 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2187 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3168 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3168 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: eqssi 3195 eqssd 3196 sseq1 3202 sseq2 3203 eqimss 3233 ssrabeq 3266 uneqin 3410 ss0b 3486 vss 3494 sssnm 3780 unidif 3867 ssunieq 3868 iuneq1 3925 iuneq2 3928 iunxdif2 3961 ssext 4250 pweqb 4252 eqopab2b 4310 pwunim 4317 soeq2 4347 iunpw 4511 ordunisuc2r 4546 tfi 4614 eqrel 4748 eqrelrel 4760 coeq1 4819 coeq2 4820 cnveq 4836 dmeq 4862 relssres 4980 xp11m 5104 xpcanm 5105 xpcan2m 5106 ssrnres 5108 fnres 5370 eqfnfv3 5657 fneqeql2 5667 fconst4m 5778 f1imaeq 5818 eqoprab2b 5976 fo1stresm 6214 fo2ndresm 6215 nnacan 6565 nnmcan 6572 ixpeq2 6766 sbthlemi3 7018 wrdeq 10936 isprm2 12255 lssle0 13868 bastop1 14251 epttop 14258 opnneiid 14332 cnntr 14393 metequiv 14663 bj-sseq 15284 bdeq0 15359 bdvsn 15366 bdop 15367 bdeqsuc 15373 bj-om 15429 |
Copyright terms: Public domain | W3C validator |