| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1501 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2190 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | ssalel 3172 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | ssalel 3172 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqssi 3200 eqssd 3201 sseq1 3207 sseq2 3208 eqimss 3238 ssrabeq 3271 uneqin 3415 ss0b 3491 vss 3499 sssnm 3785 unidif 3872 ssunieq 3873 iuneq1 3930 iuneq2 3933 iunxdif2 3966 ssext 4255 pweqb 4257 eqopab2b 4315 pwunim 4322 soeq2 4352 iunpw 4516 ordunisuc2r 4551 tfi 4619 eqrel 4753 eqrelrel 4765 coeq1 4824 coeq2 4825 cnveq 4841 dmeq 4867 relssres 4985 xp11m 5109 xpcanm 5110 xpcan2m 5111 ssrnres 5113 fnres 5377 eqfnfv3 5664 fneqeql2 5674 fconst4m 5785 f1imaeq 5825 eqoprab2b 5984 fo1stresm 6228 fo2ndresm 6229 nnacan 6579 nnmcan 6586 ixpeq2 6780 sbthlemi3 7034 wrdeq 10974 isprm2 12310 lssle0 14004 bastop1 14403 epttop 14410 opnneiid 14484 cnntr 14545 metequiv 14815 bj-sseq 15522 bdeq0 15597 bdvsn 15604 bdop 15605 bdeqsuc 15611 bj-om 15667 |
| Copyright terms: Public domain | W3C validator |