![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqss | GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1487 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2171 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3145 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3145 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ⊆ wss 3130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3136 df-ss 3143 |
This theorem is referenced by: eqssi 3172 eqssd 3173 sseq1 3179 sseq2 3180 eqimss 3210 ssrabeq 3243 uneqin 3387 ss0b 3463 vss 3471 sssnm 3755 unidif 3842 ssunieq 3843 iuneq1 3900 iuneq2 3903 iunxdif2 3936 ssext 4222 pweqb 4224 eqopab2b 4280 pwunim 4287 soeq2 4317 iunpw 4481 ordunisuc2r 4514 tfi 4582 eqrel 4716 eqrelrel 4728 coeq1 4785 coeq2 4786 cnveq 4802 dmeq 4828 relssres 4946 xp11m 5068 xpcanm 5069 xpcan2m 5070 ssrnres 5072 fnres 5333 eqfnfv3 5616 fneqeql2 5626 fconst4m 5737 f1imaeq 5776 eqoprab2b 5933 fo1stresm 6162 fo2ndresm 6163 nnacan 6513 nnmcan 6520 ixpeq2 6712 sbthlemi3 6958 isprm2 12117 bastop1 13586 epttop 13593 opnneiid 13667 cnntr 13728 metequiv 13998 bj-sseq 14547 bdeq0 14622 bdvsn 14629 bdop 14630 bdeqsuc 14636 bj-om 14692 |
Copyright terms: Public domain | W3C validator |