![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqss | GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1497 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2181 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3156 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3156 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1361 = wceq 1363 ∈ wcel 2158 ⊆ wss 3141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 |
This theorem is referenced by: eqssi 3183 eqssd 3184 sseq1 3190 sseq2 3191 eqimss 3221 ssrabeq 3254 uneqin 3398 ss0b 3474 vss 3482 sssnm 3766 unidif 3853 ssunieq 3854 iuneq1 3911 iuneq2 3914 iunxdif2 3947 ssext 4233 pweqb 4235 eqopab2b 4291 pwunim 4298 soeq2 4328 iunpw 4492 ordunisuc2r 4525 tfi 4593 eqrel 4727 eqrelrel 4739 coeq1 4796 coeq2 4797 cnveq 4813 dmeq 4839 relssres 4957 xp11m 5079 xpcanm 5080 xpcan2m 5081 ssrnres 5083 fnres 5344 eqfnfv3 5628 fneqeql2 5638 fconst4m 5749 f1imaeq 5789 eqoprab2b 5946 fo1stresm 6176 fo2ndresm 6177 nnacan 6527 nnmcan 6534 ixpeq2 6726 sbthlemi3 6972 isprm2 12131 lssle0 13561 bastop1 13879 epttop 13886 opnneiid 13960 cnntr 14021 metequiv 14291 bj-sseq 14840 bdeq0 14915 bdvsn 14922 bdop 14923 bdeqsuc 14929 bj-om 14985 |
Copyright terms: Public domain | W3C validator |