| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1511 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2200 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | ssalel 3185 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | ssalel 3185 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqssi 3213 eqssd 3214 sseq1 3220 sseq2 3221 eqimss 3251 ssrabeq 3284 uneqin 3428 ss0b 3504 vss 3512 sssnm 3800 unidif 3887 ssunieq 3888 iuneq1 3945 iuneq2 3948 iunxdif2 3981 ssext 4272 pweqb 4274 eqopab2b 4333 pwunim 4340 soeq2 4370 iunpw 4534 ordunisuc2r 4569 tfi 4637 eqrel 4771 eqrelrel 4783 coeq1 4842 coeq2 4843 cnveq 4859 dmeq 4886 relssres 5005 xp11m 5129 xpcanm 5130 xpcan2m 5131 ssrnres 5133 fnres 5401 eqfnfv3 5691 fneqeql2 5701 fconst4m 5816 f1imaeq 5856 eqoprab2b 6015 fo1stresm 6259 fo2ndresm 6260 nnacan 6610 nnmcan 6617 ixpeq2 6811 sbthlemi3 7075 wrdeq 11033 isprm2 12509 lssle0 14204 bastop1 14625 epttop 14632 opnneiid 14706 cnntr 14767 metequiv 15037 bj-sseq 15862 bdeq0 15937 bdvsn 15944 bdop 15945 bdeqsuc 15951 bj-om 16007 |
| Copyright terms: Public domain | W3C validator |