![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqss | GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1498 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2187 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3169 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3169 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqssi 3196 eqssd 3197 sseq1 3203 sseq2 3204 eqimss 3234 ssrabeq 3267 uneqin 3411 ss0b 3487 vss 3495 sssnm 3781 unidif 3868 ssunieq 3869 iuneq1 3926 iuneq2 3929 iunxdif2 3962 ssext 4251 pweqb 4253 eqopab2b 4311 pwunim 4318 soeq2 4348 iunpw 4512 ordunisuc2r 4547 tfi 4615 eqrel 4749 eqrelrel 4761 coeq1 4820 coeq2 4821 cnveq 4837 dmeq 4863 relssres 4981 xp11m 5105 xpcanm 5106 xpcan2m 5107 ssrnres 5109 fnres 5371 eqfnfv3 5658 fneqeql2 5668 fconst4m 5779 f1imaeq 5819 eqoprab2b 5977 fo1stresm 6216 fo2ndresm 6217 nnacan 6567 nnmcan 6574 ixpeq2 6768 sbthlemi3 7020 wrdeq 10939 isprm2 12258 lssle0 13871 bastop1 14262 epttop 14269 opnneiid 14343 cnntr 14404 metequiv 14674 bj-sseq 15354 bdeq0 15429 bdvsn 15436 bdop 15437 bdeqsuc 15443 bj-om 15499 |
Copyright terms: Public domain | W3C validator |