| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1533 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2223 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | ssalel 3212 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | ssalel 3212 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqssi 3240 eqssd 3241 sseq1 3247 sseq2 3248 eqimss 3278 ssrabeq 3311 uneqin 3455 ss0b 3531 vss 3539 sssnm 3832 unidif 3920 ssunieq 3921 iuneq1 3978 iuneq2 3981 iunxdif2 4014 ssext 4307 pweqb 4309 eqopab2b 4368 pwunim 4377 soeq2 4407 iunpw 4571 ordunisuc2r 4606 tfi 4674 eqrel 4808 eqrelrel 4820 coeq1 4879 coeq2 4880 cnveq 4896 dmeq 4923 relssres 5043 xp11m 5167 xpcanm 5168 xpcan2m 5169 ssrnres 5171 fnres 5440 eqfnfv3 5736 fneqeql2 5746 fconst4m 5863 f1imaeq 5905 eqoprab2b 6068 fo1stresm 6313 fo2ndresm 6314 nnacan 6666 nnmcan 6673 ixpeq2 6867 sbthlemi3 7134 wrdeq 11101 isprm2 12647 lssle0 14344 bastop1 14765 epttop 14772 opnneiid 14846 cnntr 14907 metequiv 15177 bj-sseq 16180 bdeq0 16254 bdvsn 16261 bdop 16262 bdeqsuc 16268 bj-om 16324 |
| Copyright terms: Public domain | W3C validator |