Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqss | GIF version |
Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1475 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
2 | dfcleq 2159 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | dfss2 3131 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | dfss2 3131 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
5 | 3, 4 | anbi12i 456 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
6 | 1, 2, 5 | 3bitr4i 211 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqssi 3158 eqssd 3159 sseq1 3165 sseq2 3166 eqimss 3196 ssrabeq 3229 uneqin 3373 ss0b 3448 vss 3456 sssnm 3734 unidif 3821 ssunieq 3822 iuneq1 3879 iuneq2 3882 iunxdif2 3914 ssext 4199 pweqb 4201 eqopab2b 4257 pwunim 4264 soeq2 4294 iunpw 4458 ordunisuc2r 4491 tfi 4559 eqrel 4693 eqrelrel 4705 coeq1 4761 coeq2 4762 cnveq 4778 dmeq 4804 relssres 4922 xp11m 5042 xpcanm 5043 xpcan2m 5044 ssrnres 5046 fnres 5304 eqfnfv3 5585 fneqeql2 5594 fconst4m 5705 f1imaeq 5743 eqoprab2b 5900 fo1stresm 6129 fo2ndresm 6130 nnacan 6480 nnmcan 6487 ixpeq2 6678 sbthlemi3 6924 isprm2 12049 bastop1 12723 epttop 12730 opnneiid 12804 cnntr 12865 metequiv 13135 bj-sseq 13673 bdeq0 13749 bdvsn 13756 bdop 13757 bdeqsuc 13763 bj-om 13819 |
Copyright terms: Public domain | W3C validator |