| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqss | GIF version | ||
| Description: The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqss | ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1501 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) | |
| 2 | dfcleq 2190 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | dfss2 3172 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | dfss2 3172 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) | |
| 5 | 3, 4 | anbi12i 460 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴))) |
| 6 | 1, 2, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqssi 3199 eqssd 3200 sseq1 3206 sseq2 3207 eqimss 3237 ssrabeq 3270 uneqin 3414 ss0b 3490 vss 3498 sssnm 3784 unidif 3871 ssunieq 3872 iuneq1 3929 iuneq2 3932 iunxdif2 3965 ssext 4254 pweqb 4256 eqopab2b 4314 pwunim 4321 soeq2 4351 iunpw 4515 ordunisuc2r 4550 tfi 4618 eqrel 4752 eqrelrel 4764 coeq1 4823 coeq2 4824 cnveq 4840 dmeq 4866 relssres 4984 xp11m 5108 xpcanm 5109 xpcan2m 5110 ssrnres 5112 fnres 5374 eqfnfv3 5661 fneqeql2 5671 fconst4m 5782 f1imaeq 5822 eqoprab2b 5980 fo1stresm 6219 fo2ndresm 6220 nnacan 6570 nnmcan 6577 ixpeq2 6771 sbthlemi3 7025 wrdeq 10957 isprm2 12285 lssle0 13928 bastop1 14319 epttop 14326 opnneiid 14400 cnntr 14461 metequiv 14731 bj-sseq 15438 bdeq0 15513 bdvsn 15520 bdop 15521 bdeqsuc 15527 bj-om 15583 |
| Copyright terms: Public domain | W3C validator |