Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssext | GIF version |
Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.) |
Ref | Expression |
---|---|
ssext | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssextss 4197 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
2 | ssextss 4197 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) | |
3 | 1, 2 | anbi12i 456 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵) ∧ ∀𝑥(𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴))) |
4 | eqss 3156 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | albiim 1475 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵) ↔ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵) ∧ ∀𝑥(𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴))) | |
6 | 3, 4, 5 | 3bitr4i 211 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ⊆ wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |