ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssext GIF version

Theorem ssext 4206
Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssext (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssext
StepHypRef Expression
1 ssextss 4205 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 ssextss 4205 . . 3 (𝐵𝐴 ↔ ∀𝑥(𝑥𝐵𝑥𝐴))
31, 2anbi12i 457 . 2 ((𝐴𝐵𝐵𝐴) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐵𝑥𝐴)))
4 eqss 3162 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 albiim 1480 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐵𝑥𝐴)))
63, 4, 53bitr4i 211 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator