ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsimpr GIF version

Theorem exsimpr 1642
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpr (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)

Proof of Theorem exsimpr
StepHypRef Expression
1 simpr 110 . 2 ((𝜑𝜓) → 𝜓)
21eximi 1624 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  cbvexv1  1776  onm  4455  imassrn  5041  eliotaeu  5268  fv3  5611  relelfvdm  5620  nfvres  5622  brtpos2  6349  finacn  7331  cc1  7392  acnccim  7399  omiunct  12885
  Copyright terms: Public domain W3C validator