ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s GIF version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
ancom2s ((𝜑 ∧ (𝜒𝜓)) → 𝜃)

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2 ((𝜒𝜓) → (𝜓𝜒))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 286 1 ((𝜑 ∧ (𝜒𝜓)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  589  ordsuc  4595  xpexr2m  5107  f1elima  5816  f1imaeq  5818  isosolem  5867  caovlem2d  6111  2ndconst  6275  isotilem  7065  prarloclem4  7558  mulsub  8420  leltadd  8466  eqord1  8502  divmul24ap  8735  fprodseq  11726  grpidpropdg  12957  cmnpropd  13365  unitpropdg  13644  blcomps  14564  blcom  14565  cxple  15051  cxple3  15055
  Copyright terms: Public domain W3C validator