ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s GIF version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
ancom2s ((𝜑 ∧ (𝜒𝜓)) → 𝜃)

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2 ((𝜒𝜓) → (𝜓𝜒))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 286 1 ((𝜑 ∧ (𝜒𝜓)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  591  ordsuc  4655  xpexr2m  5170  f1elima  5903  f1imaeq  5905  isosolem  5954  caovlem2d  6204  2ndconst  6374  isotilem  7181  prarloclem4  7693  mulsub  8555  leltadd  8602  eqord1  8638  divmul24ap  8871  fprodseq  12102  grpidpropdg  13415  cmnpropd  13840  unitpropdg  14120  blcomps  15078  blcom  15079  dvmptfsum  15407  cxple  15599  cxple3  15603  uhgr2edg  16012
  Copyright terms: Public domain W3C validator