ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s GIF version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
ancom2s ((𝜑 ∧ (𝜒𝜓)) → 𝜃)

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2 ((𝜒𝜓) → (𝜓𝜒))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 286 1 ((𝜑 ∧ (𝜒𝜓)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  589  ordsuc  4600  xpexr2m  5112  f1elima  5823  f1imaeq  5825  isosolem  5874  caovlem2d  6120  2ndconst  6289  isotilem  7081  prarloclem4  7582  mulsub  8444  leltadd  8491  eqord1  8527  divmul24ap  8760  fprodseq  11765  grpidpropdg  13076  cmnpropd  13501  unitpropdg  13780  blcomps  14716  blcom  14717  dvmptfsum  15045  cxple  15237  cxple3  15241
  Copyright terms: Public domain W3C validator