| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom2s | GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: an42s 591 ordsuc 4655 xpexr2m 5170 f1elima 5903 f1imaeq 5905 isosolem 5954 caovlem2d 6204 2ndconst 6374 isotilem 7181 prarloclem4 7693 mulsub 8555 leltadd 8602 eqord1 8638 divmul24ap 8871 fprodseq 12102 grpidpropdg 13415 cmnpropd 13840 unitpropdg 14120 blcomps 15078 blcom 15079 dvmptfsum 15407 cxple 15599 cxple3 15603 uhgr2edg 16012 |
| Copyright terms: Public domain | W3C validator |