ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s GIF version

Theorem ancom2s 561
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
ancom2s ((𝜑 ∧ (𝜒𝜓)) → 𝜃)

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 263 . 2 ((𝜒𝜓) → (𝜓𝜒))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 284 1 ((𝜑 ∧ (𝜒𝜓)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  an42s  584  ordsuc  4545  xpexr2m  5050  f1elima  5750  f1imaeq  5752  isosolem  5801  caovlem2d  6043  2ndconst  6199  isotilem  6981  prarloclem4  7453  mulsub  8313  leltadd  8359  eqord1  8395  divmul24ap  8626  fprodseq  11539  grpidpropdg  12621  blcomps  13155  blcom  13156  cxple  13596  cxple3  13600
  Copyright terms: Public domain W3C validator