ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s GIF version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
ancom2s ((𝜑 ∧ (𝜒𝜓)) → 𝜃)

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2 ((𝜒𝜓) → (𝜓𝜒))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 286 1 ((𝜑 ∧ (𝜒𝜓)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  591  ordsuc  4632  xpexr2m  5146  f1elima  5870  f1imaeq  5872  isosolem  5921  caovlem2d  6169  2ndconst  6338  isotilem  7141  prarloclem4  7653  mulsub  8515  leltadd  8562  eqord1  8598  divmul24ap  8831  fprodseq  12060  grpidpropdg  13373  cmnpropd  13798  unitpropdg  14077  blcomps  15035  blcom  15036  dvmptfsum  15364  cxple  15556  cxple3  15560  uhgr2edg  15969
  Copyright terms: Public domain W3C validator