ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftr GIF version

Theorem iccshftr 9560
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1 (𝐴 + 𝑅) = 𝐶
iccshftr.2 (𝐵 + 𝑅) = 𝐷
Assertion
Ref Expression
iccshftr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝑋 ∈ ℝ)
2 readdcl 7565 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 + 𝑅) ∈ ℝ)
31, 22thd 174 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
43adantl 272 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
5 leadd1 8005 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
653expb 1147 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
76adantlr 462 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
8 iccshftr.1 . . . . 5 (𝐴 + 𝑅) = 𝐶
98breq1i 3874 . . . 4 ((𝐴 + 𝑅) ≤ (𝑋 + 𝑅) ↔ 𝐶 ≤ (𝑋 + 𝑅))
107, 9syl6bb 195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋𝐶 ≤ (𝑋 + 𝑅)))
11 leadd1 8005 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
12113expb 1147 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1312an12s 533 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1413adantll 461 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
15 iccshftr.2 . . . . 5 (𝐵 + 𝑅) = 𝐷
1615breq2i 3875 . . . 4 ((𝑋 + 𝑅) ≤ (𝐵 + 𝑅) ↔ (𝑋 + 𝑅) ≤ 𝐷)
1714, 16syl6bb 195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ 𝐷))
184, 10, 173anbi123d 1255 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
19 elicc2 9504 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2019adantr 271 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
21 readdcl 7565 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 + 𝑅) ∈ ℝ)
228, 21syl5eqelr 2182 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
23 readdcl 7565 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 + 𝑅) ∈ ℝ)
2415, 23syl5eqelr 2182 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
25 elicc2 9504 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2622, 24, 25syl2an 284 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2726anandirs 561 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2827adantrl 463 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2918, 20, 283bitr4d 219 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 927   = wceq 1296  wcel 1445   class class class wbr 3867  (class class class)co 5690  cr 7446   + caddc 7450  cle 7620  [,]cicc 9457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-i2m1 7547  ax-0id 7550  ax-rnegex 7551  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-icc 9461
This theorem is referenced by:  iccshftri  9561  lincmb01cmp  9569
  Copyright terms: Public domain W3C validator