ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftr GIF version

Theorem iccshftr 10023
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1 (𝐴 + 𝑅) = 𝐶
iccshftr.2 (𝐵 + 𝑅) = 𝐷
Assertion
Ref Expression
iccshftr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝑋 ∈ ℝ)
2 readdcl 7966 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 + 𝑅) ∈ ℝ)
31, 22thd 175 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
43adantl 277 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ ℝ ↔ (𝑋 + 𝑅) ∈ ℝ))
5 leadd1 8416 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
653expb 1206 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
76adantlr 477 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴 + 𝑅) ≤ (𝑋 + 𝑅)))
8 iccshftr.1 . . . . 5 (𝐴 + 𝑅) = 𝐶
98breq1i 4025 . . . 4 ((𝐴 + 𝑅) ≤ (𝑋 + 𝑅) ↔ 𝐶 ≤ (𝑋 + 𝑅))
107, 9bitrdi 196 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋𝐶 ≤ (𝑋 + 𝑅)))
11 leadd1 8416 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
12113expb 1206 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1312an12s 565 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
1413adantll 476 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ (𝐵 + 𝑅)))
15 iccshftr.2 . . . . 5 (𝐵 + 𝑅) = 𝐷
1615breq2i 4026 . . . 4 ((𝑋 + 𝑅) ≤ (𝐵 + 𝑅) ↔ (𝑋 + 𝑅) ≤ 𝐷)
1714, 16bitrdi 196 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋 + 𝑅) ≤ 𝐷))
184, 10, 173anbi123d 1323 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
19 elicc2 9967 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2019adantr 276 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
21 readdcl 7966 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 + 𝑅) ∈ ℝ)
228, 21eqeltrrid 2277 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
23 readdcl 7966 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 + 𝑅) ∈ ℝ)
2415, 23eqeltrrid 2277 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
25 elicc2 9967 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2622, 24, 25syl2an 289 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2726anandirs 593 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2827adantrl 478 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 + 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 + 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 + 𝑅) ∧ (𝑋 + 𝑅) ≤ 𝐷)))
2918, 20, 283bitr4d 220 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5895  cr 7839   + caddc 7843  cle 8022  [,]cicc 9920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-icc 9924
This theorem is referenced by:  iccshftri  10024  lincmb01cmp  10032
  Copyright terms: Public domain W3C validator