Proof of Theorem ndvdsadd
| Step | Hyp | Ref
| Expression |
| 1 | | nnre 9014 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℝ) |
| 2 | | nnre 9014 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℝ) |
| 3 | | posdif 8499 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐾 < 𝐷 ↔ 0 < (𝐷 − 𝐾))) |
| 4 | 1, 2, 3 | syl2anr 290 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐾 < 𝐷 ↔ 0 < (𝐷 − 𝐾))) |
| 5 | 4 | pm5.32i 454 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) ↔ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷 − 𝐾))) |
| 6 | | nnz 9362 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℤ) |
| 7 | | nnz 9362 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℤ) |
| 8 | | zsubcl 9384 |
. . . . . . . . 9
⊢ ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 − 𝐾) ∈ ℤ) |
| 9 | 6, 7, 8 | syl2an 289 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 − 𝐾) ∈ ℤ) |
| 10 | | elnnz 9353 |
. . . . . . . . 9
⊢ ((𝐷 − 𝐾) ∈ ℕ ↔ ((𝐷 − 𝐾) ∈ ℤ ∧ 0 < (𝐷 − 𝐾))) |
| 11 | 10 | biimpri 133 |
. . . . . . . 8
⊢ (((𝐷 − 𝐾) ∈ ℤ ∧ 0 < (𝐷 − 𝐾)) → (𝐷 − 𝐾) ∈ ℕ) |
| 12 | 9, 11 | sylan 283 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 <
(𝐷 − 𝐾)) → (𝐷 − 𝐾) ∈ ℕ) |
| 13 | 5, 12 | sylbi 121 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) → (𝐷 − 𝐾) ∈ ℕ) |
| 14 | 13 | anasss 399 |
. . . . 5
⊢ ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 − 𝐾) ∈ ℕ) |
| 15 | | nngt0 9032 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 0 <
𝐾) |
| 16 | | ltsubpos 8498 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (0 <
𝐾 ↔ (𝐷 − 𝐾) < 𝐷)) |
| 17 | 1, 2, 16 | syl2an 289 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 <
𝐾 ↔ (𝐷 − 𝐾) < 𝐷)) |
| 18 | 17 | biimpd 144 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 <
𝐾 → (𝐷 − 𝐾) < 𝐷)) |
| 19 | 18 | expcom 116 |
. . . . . . . 8
⊢ (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (0 <
𝐾 → (𝐷 − 𝐾) < 𝐷))) |
| 20 | 15, 19 | mpdi 43 |
. . . . . . 7
⊢ (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (𝐷 − 𝐾) < 𝐷)) |
| 21 | 20 | imp 124 |
. . . . . 6
⊢ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 − 𝐾) < 𝐷) |
| 22 | 21 | adantrr 479 |
. . . . 5
⊢ ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 − 𝐾) < 𝐷) |
| 23 | 14, 22 | jca 306 |
. . . 4
⊢ ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷 − 𝐾) ∈ ℕ ∧ (𝐷 − 𝐾) < 𝐷)) |
| 24 | 23 | 3adant1 1017 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷 − 𝐾) ∈ ℕ ∧ (𝐷 − 𝐾) < 𝐷)) |
| 25 | | ndvdssub 12112 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ((𝐷 − 𝐾) ∈ ℕ ∧ (𝐷 − 𝐾) < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷 − 𝐾)))) |
| 26 | 24, 25 | syld3an3 1294 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷 − 𝐾)))) |
| 27 | | zaddcl 9383 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ) |
| 28 | 7, 27 | sylan2 286 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 + 𝐾) ∈ ℤ) |
| 29 | | dvdssubr 12021 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷))) |
| 30 | 6, 28, 29 | syl2an 289 |
. . . . . . 7
⊢ ((𝐷 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷))) |
| 31 | 30 | an12s 565 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷))) |
| 32 | 31 | 3impb 1201 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷))) |
| 33 | | zcn 9348 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 34 | | nncn 9015 |
. . . . . . 7
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℂ) |
| 35 | | nncn 9015 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℂ) |
| 36 | | subsub3 8275 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝐷 − 𝐾)) = ((𝑁 + 𝐾) − 𝐷)) |
| 37 | 33, 34, 35, 36 | syl3an 1291 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 − (𝐷 − 𝐾)) = ((𝑁 + 𝐾) − 𝐷)) |
| 38 | 37 | breq2d 4046 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 − (𝐷 − 𝐾)) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷))) |
| 39 | 32, 38 | bitr4d 191 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ (𝑁 − (𝐷 − 𝐾)))) |
| 40 | 39 | notbid 668 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (¬
𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷 − 𝐾)))) |
| 41 | 40 | 3adant3r 1237 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷 − 𝐾)))) |
| 42 | 26, 41 | sylibrd 169 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾))) |