ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndvdsadd GIF version

Theorem ndvdsadd 12450
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdsadd ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))

Proof of Theorem ndvdsadd
StepHypRef Expression
1 nnre 9125 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 nnre 9125 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
3 posdif 8610 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
41, 2, 3syl2anr 290 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
54pm5.32i 454 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) ↔ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)))
6 nnz 9473 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
7 nnz 9473 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
8 zsubcl 9495 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷𝐾) ∈ ℤ)
96, 7, 8syl2an 289 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) ∈ ℤ)
10 elnnz 9464 . . . . . . . . 9 ((𝐷𝐾) ∈ ℕ ↔ ((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)))
1110biimpri 133 . . . . . . . 8 (((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
129, 11sylan 283 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
135, 12sylbi 121 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) → (𝐷𝐾) ∈ ℕ)
1413anasss 399 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) ∈ ℕ)
15 nngt0 9143 . . . . . . . 8 (𝐾 ∈ ℕ → 0 < 𝐾)
16 ltsubpos 8609 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
171, 2, 16syl2an 289 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
1817biimpd 144 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 → (𝐷𝐾) < 𝐷))
1918expcom 116 . . . . . . . 8 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐷𝐾) < 𝐷)))
2015, 19mpdi 43 . . . . . . 7 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (𝐷𝐾) < 𝐷))
2120imp 124 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) < 𝐷)
2221adantrr 479 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) < 𝐷)
2314, 22jca 306 . . . 4 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
24233adant1 1039 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
25 ndvdssub 12449 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
2624, 25syld3an3 1316 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
27 zaddcl 9494 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
287, 27sylan2 286 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 + 𝐾) ∈ ℤ)
29 dvdssubr 12358 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
306, 28, 29syl2an 289 . . . . . . 7 ((𝐷 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3130an12s 565 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
32313impb 1223 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
33 zcn 9459 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
34 nncn 9126 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
35 nncn 9126 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
36 subsub3 8386 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3733, 34, 35, 36syl3an 1313 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3837breq2d 4095 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 − (𝐷𝐾)) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3932, 38bitr4d 191 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4039notbid 671 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
41403adant3r 1259 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4226, 41sylibrd 169 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007   + caddc 8010   < clt 8189  cmin 8325  cn 9118  cz 9454  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307
This theorem is referenced by:  ndvdsp1  12451  ndvdsi  12452
  Copyright terms: Public domain W3C validator