Step | Hyp | Ref
| Expression |
1 | | isfi 6727 |
. . . 4
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
2 | 1 | biimpi 119 |
. . 3
⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | 2 | adantl 275 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
4 | | simprlr 528 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → 𝐴 ∈ Fin) |
5 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅)) |
6 | 5 | anbi2d 460 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅))) |
7 | 6 | imbi1d 230 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
8 | 7 | albidv 1812 |
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
9 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑤 = 𝑘 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑘)) |
10 | 9 | anbi2d 460 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘))) |
11 | 10 | imbi1d 230 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
12 | 11 | albidv 1812 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
13 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑤 = suc 𝑘 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑘)) |
14 | 13 | anbi2d 460 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘))) |
15 | 14 | imbi1d 230 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
16 | 15 | albidv 1812 |
. . . . . 6
⊢ (𝑤 = suc 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
17 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑤 = 𝑛 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑛)) |
18 | 17 | anbi2d 460 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛))) |
19 | 18 | imbi1d 230 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
20 | 19 | albidv 1812 |
. . . . . 6
⊢ (𝑤 = 𝑛 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
21 | | iso0 5785 |
. . . . . . . . . 10
⊢ ∅
Isom < , < (∅, ∅) |
22 | | en0 6761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) |
23 | 22 | biimpi 119 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ≈ ∅ → 𝑥 = ∅) |
24 | 23 | fveq2d 5490 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≈ ∅ →
(♯‘𝑥) =
(♯‘∅)) |
25 | | hash0 10710 |
. . . . . . . . . . . . . . 15
⊢
(♯‘∅) = 0 |
26 | 24, 25 | eqtrdi 2215 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≈ ∅ →
(♯‘𝑥) =
0) |
27 | 26 | oveq2d 5858 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≈ ∅ →
(1...(♯‘𝑥)) =
(1...0)) |
28 | | fz10 9981 |
. . . . . . . . . . . . 13
⊢ (1...0) =
∅ |
29 | 27, 28 | eqtrdi 2215 |
. . . . . . . . . . . 12
⊢ (𝑥 ≈ ∅ →
(1...(♯‘𝑥)) =
∅) |
30 | | isoeq4 5772 |
. . . . . . . . . . . 12
⊢
((1...(♯‘𝑥)) = ∅ → (∅ Isom < , <
((1...(♯‘𝑥)),
𝑥) ↔ ∅ Isom <
, < (∅, 𝑥))) |
31 | 29, 30 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅,
𝑥))) |
32 | | isoeq5 5773 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (∅ Isom
< , < (∅, 𝑥)
↔ ∅ Isom < , < (∅, ∅))) |
33 | 23, 32 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < (∅, 𝑥) ↔ ∅ Isom < , < (∅,
∅))) |
34 | 31, 33 | bitrd 187 |
. . . . . . . . . 10
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅,
∅))) |
35 | 21, 34 | mpbiri 167 |
. . . . . . . . 9
⊢ (𝑥 ≈ ∅ → ∅
Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
36 | | 0ex 4109 |
. . . . . . . . . 10
⊢ ∅
∈ V |
37 | | isoeq1 5769 |
. . . . . . . . . 10
⊢ (𝑓 = ∅ → (𝑓 Isom < , <
((1...(♯‘𝑥)),
𝑥) ↔ ∅ Isom <
, < ((1...(♯‘𝑥)), 𝑥))) |
38 | 36, 37 | spcev 2821 |
. . . . . . . . 9
⊢ (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
39 | 35, 38 | syl 14 |
. . . . . . . 8
⊢ (𝑥 ≈ ∅ →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
40 | 39 | adantl 275 |
. . . . . . 7
⊢ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
41 | 40 | ax-gen 1437 |
. . . . . 6
⊢
∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
42 | | sseq1 3165 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ⊆ ℤ ↔ 𝑥 ⊆ ℤ)) |
43 | | eleq1 2229 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ∈ Fin ↔ 𝑥 ∈ Fin)) |
44 | 42, 43 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ↔ (𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin))) |
45 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑎 ≈ 𝑘 ↔ 𝑥 ≈ 𝑘)) |
46 | 44, 45 | anbi12d 465 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘))) |
47 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (♯‘𝑎) = (♯‘𝑥)) |
48 | 47 | oveq2d 5858 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (1...(♯‘𝑎)) = (1...(♯‘𝑥))) |
49 | | isoeq4 5772 |
. . . . . . . . . . . 12
⊢
((1...(♯‘𝑎)) = (1...(♯‘𝑥)) → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎))) |
50 | 48, 49 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎))) |
51 | | isoeq5 5773 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
52 | 50, 51 | bitrd 187 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
53 | 52 | exbidv 1813 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
54 | 46, 53 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → ((((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
55 | 54 | cbvalv 1905 |
. . . . . . 7
⊢
(∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
56 | | simprll 527 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℤ) |
57 | | zssq 9565 |
. . . . . . . . . . . . 13
⊢ ℤ
⊆ ℚ |
58 | 56, 57 | sstrdi 3154 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℚ) |
59 | | simprlr 528 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ∈ Fin) |
60 | | vex 2729 |
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V |
61 | | nsuceq0g 4396 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ V → suc 𝑘 ≠ ∅) |
62 | 60, 61 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ suc 𝑘 ≠ ∅ |
63 | 62 | neii 2338 |
. . . . . . . . . . . . . 14
⊢ ¬
suc 𝑘 =
∅ |
64 | | simplrr 526 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 ≈ suc 𝑘) |
65 | 64 | ensymd 6749 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ 𝑥) |
66 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 = ∅) |
67 | 65, 66 | breqtrd 4008 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ ∅) |
68 | | en0 6761 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑘 ≈ ∅ ↔
suc 𝑘 =
∅) |
69 | 67, 68 | sylib 121 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 = ∅) |
70 | 69 | ex 114 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → (𝑥 = ∅ → suc 𝑘 = ∅)) |
71 | 63, 70 | mtoi 654 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ¬ 𝑥 = ∅) |
72 | 71 | neqned 2343 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ≠ ∅) |
73 | | fimaxq 10740 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ ℚ ∧ 𝑥 ∈ Fin ∧ 𝑥 ≠ ∅) →
∃𝑚 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) |
74 | 58, 59, 72, 73 | syl3anc 1228 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑚 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) |
75 | | simplll 523 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑘 ∈ ω) |
76 | | simpllr 524 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) |
77 | 56 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ⊆ ℤ) |
78 | 59 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ∈ Fin) |
79 | | simplrr 526 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ≈ suc 𝑘) |
80 | | simprl 521 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑚 ∈ 𝑥) |
81 | | simprr 522 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) |
82 | 75, 76, 77, 78, 79, 80, 81 | zfz1isolem1 10753 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
83 | 74, 82 | rexlimddv 2588 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
84 | 83 | ex 114 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
85 | 84 | alrimiv 1862 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
86 | 85 | ex 114 |
. . . . . . 7
⊢ (𝑘 ∈ ω →
(∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
87 | 55, 86 | syl5bir 152 |
. . . . . 6
⊢ (𝑘 ∈ ω →
(∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
88 | 8, 12, 16, 20, 41, 87 | finds 4577 |
. . . . 5
⊢ (𝑛 ∈ ω →
∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
89 | 88 | adantr 274 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
90 | | simpr 109 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) |
91 | | sseq1 3165 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ℤ ↔ 𝐴 ⊆ ℤ)) |
92 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) |
93 | 91, 92 | anbi12d 465 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ↔ (𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin))) |
94 | | breq1 3985 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑛 ↔ 𝐴 ≈ 𝑛)) |
95 | 93, 94 | anbi12d 465 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) ↔ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛))) |
96 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) |
97 | 96 | oveq2d 5858 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (1...(♯‘𝑥)) = (1...(♯‘𝐴))) |
98 | | isoeq4 5772 |
. . . . . . . . 9
⊢
((1...(♯‘𝑥)) = (1...(♯‘𝐴)) → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥))) |
99 | 97, 98 | syl 14 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥))) |
100 | | isoeq5 5773 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) |
101 | 99, 100 | bitrd 187 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) |
102 | 101 | exbidv 1813 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) |
103 | 95, 102 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))) |
104 | 103 | spcgv 2813 |
. . . 4
⊢ (𝐴 ∈ Fin →
(∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))) |
105 | 4, 89, 90, 104 | syl3c 63 |
. . 3
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
106 | 105 | an12s 555 |
. 2
⊢ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
107 | 3, 106 | rexlimddv 2588 |
1
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |