| Step | Hyp | Ref
| Expression |
| 1 | | isfi 6829 |
. . . 4
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 2 | 1 | biimpi 120 |
. . 3
⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | 2 | adantl 277 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 4 | | simprlr 538 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → 𝐴 ∈ Fin) |
| 5 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅)) |
| 6 | 5 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅))) |
| 7 | 6 | imbi1d 231 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 8 | 7 | albidv 1838 |
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 9 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑤 = 𝑘 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑘)) |
| 10 | 9 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘))) |
| 11 | 10 | imbi1d 231 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 12 | 11 | albidv 1838 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 13 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑤 = suc 𝑘 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑘)) |
| 14 | 13 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘))) |
| 15 | 14 | imbi1d 231 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 16 | 15 | albidv 1838 |
. . . . . 6
⊢ (𝑤 = suc 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 17 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑤 = 𝑛 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑛)) |
| 18 | 17 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛))) |
| 19 | 18 | imbi1d 231 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 20 | 19 | albidv 1838 |
. . . . . 6
⊢ (𝑤 = 𝑛 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 21 | | iso0 5867 |
. . . . . . . . . 10
⊢ ∅
Isom < , < (∅, ∅) |
| 22 | | en0 6863 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) |
| 23 | 22 | biimpi 120 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ≈ ∅ → 𝑥 = ∅) |
| 24 | 23 | fveq2d 5565 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≈ ∅ →
(♯‘𝑥) =
(♯‘∅)) |
| 25 | | hash0 10905 |
. . . . . . . . . . . . . . 15
⊢
(♯‘∅) = 0 |
| 26 | 24, 25 | eqtrdi 2245 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≈ ∅ →
(♯‘𝑥) =
0) |
| 27 | 26 | oveq2d 5941 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≈ ∅ →
(1...(♯‘𝑥)) =
(1...0)) |
| 28 | | fz10 10138 |
. . . . . . . . . . . . 13
⊢ (1...0) =
∅ |
| 29 | 27, 28 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ (𝑥 ≈ ∅ →
(1...(♯‘𝑥)) =
∅) |
| 30 | | isoeq4 5854 |
. . . . . . . . . . . 12
⊢
((1...(♯‘𝑥)) = ∅ → (∅ Isom < , <
((1...(♯‘𝑥)),
𝑥) ↔ ∅ Isom <
, < (∅, 𝑥))) |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅,
𝑥))) |
| 32 | | isoeq5 5855 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (∅ Isom
< , < (∅, 𝑥)
↔ ∅ Isom < , < (∅, ∅))) |
| 33 | 23, 32 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < (∅, 𝑥) ↔ ∅ Isom < , < (∅,
∅))) |
| 34 | 31, 33 | bitrd 188 |
. . . . . . . . . 10
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅,
∅))) |
| 35 | 21, 34 | mpbiri 168 |
. . . . . . . . 9
⊢ (𝑥 ≈ ∅ → ∅
Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
| 36 | | 0ex 4161 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 37 | | isoeq1 5851 |
. . . . . . . . . 10
⊢ (𝑓 = ∅ → (𝑓 Isom < , <
((1...(♯‘𝑥)),
𝑥) ↔ ∅ Isom <
, < ((1...(♯‘𝑥)), 𝑥))) |
| 38 | 36, 37 | spcev 2859 |
. . . . . . . . 9
⊢ (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
| 39 | 35, 38 | syl 14 |
. . . . . . . 8
⊢ (𝑥 ≈ ∅ →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
| 40 | 39 | adantl 277 |
. . . . . . 7
⊢ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
| 41 | 40 | ax-gen 1463 |
. . . . . 6
⊢
∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
| 42 | | sseq1 3207 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ⊆ ℤ ↔ 𝑥 ⊆ ℤ)) |
| 43 | | eleq1 2259 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ∈ Fin ↔ 𝑥 ∈ Fin)) |
| 44 | 42, 43 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ↔ (𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin))) |
| 45 | | breq1 4037 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑎 ≈ 𝑘 ↔ 𝑥 ≈ 𝑘)) |
| 46 | 44, 45 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘))) |
| 47 | | fveq2 5561 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (♯‘𝑎) = (♯‘𝑥)) |
| 48 | 47 | oveq2d 5941 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (1...(♯‘𝑎)) = (1...(♯‘𝑥))) |
| 49 | | isoeq4 5854 |
. . . . . . . . . . . 12
⊢
((1...(♯‘𝑎)) = (1...(♯‘𝑥)) → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎))) |
| 50 | 48, 49 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎))) |
| 51 | | isoeq5 5855 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 52 | 50, 51 | bitrd 188 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 53 | 52 | exbidv 1839 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 54 | 46, 53 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → ((((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 55 | 54 | cbvalv 1932 |
. . . . . . 7
⊢
(∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 56 | | simprll 537 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℤ) |
| 57 | | zssq 9718 |
. . . . . . . . . . . . 13
⊢ ℤ
⊆ ℚ |
| 58 | 56, 57 | sstrdi 3196 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℚ) |
| 59 | | simprlr 538 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ∈ Fin) |
| 60 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V |
| 61 | | nsuceq0g 4454 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ V → suc 𝑘 ≠ ∅) |
| 62 | 60, 61 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ suc 𝑘 ≠ ∅ |
| 63 | 62 | neii 2369 |
. . . . . . . . . . . . . 14
⊢ ¬
suc 𝑘 =
∅ |
| 64 | | simplrr 536 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 ≈ suc 𝑘) |
| 65 | 64 | ensymd 6851 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ 𝑥) |
| 66 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 = ∅) |
| 67 | 65, 66 | breqtrd 4060 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ ∅) |
| 68 | | en0 6863 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑘 ≈ ∅ ↔
suc 𝑘 =
∅) |
| 69 | 67, 68 | sylib 122 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 = ∅) |
| 70 | 69 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → (𝑥 = ∅ → suc 𝑘 = ∅)) |
| 71 | 63, 70 | mtoi 665 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ¬ 𝑥 = ∅) |
| 72 | 71 | neqned 2374 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ≠ ∅) |
| 73 | | fimaxq 10936 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ ℚ ∧ 𝑥 ∈ Fin ∧ 𝑥 ≠ ∅) →
∃𝑚 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) |
| 74 | 58, 59, 72, 73 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑚 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) |
| 75 | | simplll 533 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑘 ∈ ω) |
| 76 | | simpllr 534 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) |
| 77 | 56 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ⊆ ℤ) |
| 78 | 59 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ∈ Fin) |
| 79 | | simplrr 536 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ≈ suc 𝑘) |
| 80 | | simprl 529 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑚 ∈ 𝑥) |
| 81 | | simprr 531 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) |
| 82 | 75, 76, 77, 78, 79, 80, 81 | zfz1isolem1 10949 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
| 83 | 74, 82 | rexlimddv 2619 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) |
| 84 | 83 | ex 115 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 85 | 84 | alrimiv 1888 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 86 | 85 | ex 115 |
. . . . . . 7
⊢ (𝑘 ∈ ω →
(∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 87 | 55, 86 | biimtrrid 153 |
. . . . . 6
⊢ (𝑘 ∈ ω →
(∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) |
| 88 | 8, 12, 16, 20, 41, 87 | finds 4637 |
. . . . 5
⊢ (𝑛 ∈ ω →
∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 89 | 88 | adantr 276 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) |
| 90 | | simpr 110 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) |
| 91 | | sseq1 3207 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ℤ ↔ 𝐴 ⊆ ℤ)) |
| 92 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 93 | 91, 92 | anbi12d 473 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ↔ (𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin))) |
| 94 | | breq1 4037 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑛 ↔ 𝐴 ≈ 𝑛)) |
| 95 | 93, 94 | anbi12d 473 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) ↔ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛))) |
| 96 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) |
| 97 | 96 | oveq2d 5941 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (1...(♯‘𝑥)) = (1...(♯‘𝐴))) |
| 98 | | isoeq4 5854 |
. . . . . . . . 9
⊢
((1...(♯‘𝑥)) = (1...(♯‘𝐴)) → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥))) |
| 99 | 97, 98 | syl 14 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥))) |
| 100 | | isoeq5 5855 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) |
| 101 | 99, 100 | bitrd 188 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) |
| 102 | 101 | exbidv 1839 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) |
| 103 | 95, 102 | imbi12d 234 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))) |
| 104 | 103 | spcgv 2851 |
. . . 4
⊢ (𝐴 ∈ Fin →
(∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))) |
| 105 | 4, 89, 90, 104 | syl3c 63 |
. . 3
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 106 | 105 | an12s 565 |
. 2
⊢ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 107 | 3, 106 | rexlimddv 2619 |
1
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |