| Step | Hyp | Ref
 | Expression | 
| 1 |   | isfi 6820 | 
. . . 4
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | 
| 2 | 1 | biimpi 120 | 
. . 3
⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | 
| 3 | 2 | adantl 277 | 
. 2
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | 
| 4 |   | simprlr 538 | 
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → 𝐴 ∈ Fin) | 
| 5 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅)) | 
| 6 | 5 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑤 = ∅ → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅))) | 
| 7 | 6 | imbi1d 231 | 
. . . . . . 7
⊢ (𝑤 = ∅ → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 8 | 7 | albidv 1838 | 
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 9 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑘 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑘)) | 
| 10 | 9 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘))) | 
| 11 | 10 | imbi1d 231 | 
. . . . . . 7
⊢ (𝑤 = 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 12 | 11 | albidv 1838 | 
. . . . . 6
⊢ (𝑤 = 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 13 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑤 = suc 𝑘 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑘)) | 
| 14 | 13 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑤 = suc 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘))) | 
| 15 | 14 | imbi1d 231 | 
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 16 | 15 | albidv 1838 | 
. . . . . 6
⊢ (𝑤 = suc 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 17 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑛 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑛)) | 
| 18 | 17 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑤 = 𝑛 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛))) | 
| 19 | 18 | imbi1d 231 | 
. . . . . . 7
⊢ (𝑤 = 𝑛 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 20 | 19 | albidv 1838 | 
. . . . . 6
⊢ (𝑤 = 𝑛 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 21 |   | iso0 5864 | 
. . . . . . . . . 10
⊢ ∅
Isom < , < (∅, ∅) | 
| 22 |   | en0 6854 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) | 
| 23 | 22 | biimpi 120 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ≈ ∅ → 𝑥 = ∅) | 
| 24 | 23 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≈ ∅ →
(♯‘𝑥) =
(♯‘∅)) | 
| 25 |   | hash0 10888 | 
. . . . . . . . . . . . . . 15
⊢
(♯‘∅) = 0 | 
| 26 | 24, 25 | eqtrdi 2245 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 ≈ ∅ →
(♯‘𝑥) =
0) | 
| 27 | 26 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ≈ ∅ →
(1...(♯‘𝑥)) =
(1...0)) | 
| 28 |   | fz10 10121 | 
. . . . . . . . . . . . 13
⊢ (1...0) =
∅ | 
| 29 | 27, 28 | eqtrdi 2245 | 
. . . . . . . . . . . 12
⊢ (𝑥 ≈ ∅ →
(1...(♯‘𝑥)) =
∅) | 
| 30 |   | isoeq4 5851 | 
. . . . . . . . . . . 12
⊢
((1...(♯‘𝑥)) = ∅ → (∅ Isom < , <
((1...(♯‘𝑥)),
𝑥) ↔ ∅ Isom <
, < (∅, 𝑥))) | 
| 31 | 29, 30 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅,
𝑥))) | 
| 32 |   | isoeq5 5852 | 
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (∅ Isom
< , < (∅, 𝑥)
↔ ∅ Isom < , < (∅, ∅))) | 
| 33 | 23, 32 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < (∅, 𝑥) ↔ ∅ Isom < , < (∅,
∅))) | 
| 34 | 31, 33 | bitrd 188 | 
. . . . . . . . . 10
⊢ (𝑥 ≈ ∅ → (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅,
∅))) | 
| 35 | 21, 34 | mpbiri 168 | 
. . . . . . . . 9
⊢ (𝑥 ≈ ∅ → ∅
Isom < , < ((1...(♯‘𝑥)), 𝑥)) | 
| 36 |   | 0ex 4160 | 
. . . . . . . . . 10
⊢ ∅
∈ V | 
| 37 |   | isoeq1 5848 | 
. . . . . . . . . 10
⊢ (𝑓 = ∅ → (𝑓 Isom < , <
((1...(♯‘𝑥)),
𝑥) ↔ ∅ Isom <
, < ((1...(♯‘𝑥)), 𝑥))) | 
| 38 | 36, 37 | spcev 2859 | 
. . . . . . . . 9
⊢ (∅
Isom < , < ((1...(♯‘𝑥)), 𝑥) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) | 
| 39 | 35, 38 | syl 14 | 
. . . . . . . 8
⊢ (𝑥 ≈ ∅ →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) | 
| 40 | 39 | adantl 277 | 
. . . . . . 7
⊢ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) | 
| 41 | 40 | ax-gen 1463 | 
. . . . . 6
⊢
∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) →
∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) | 
| 42 |   | sseq1 3206 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ⊆ ℤ ↔ 𝑥 ⊆ ℤ)) | 
| 43 |   | eleq1 2259 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ∈ Fin ↔ 𝑥 ∈ Fin)) | 
| 44 | 42, 43 | anbi12d 473 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ↔ (𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin))) | 
| 45 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑎 ≈ 𝑘 ↔ 𝑥 ≈ 𝑘)) | 
| 46 | 44, 45 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘))) | 
| 47 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (♯‘𝑎) = (♯‘𝑥)) | 
| 48 | 47 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (1...(♯‘𝑎)) = (1...(♯‘𝑥))) | 
| 49 |   | isoeq4 5851 | 
. . . . . . . . . . . 12
⊢
((1...(♯‘𝑎)) = (1...(♯‘𝑥)) → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎))) | 
| 50 | 48, 49 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎))) | 
| 51 |   | isoeq5 5852 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 52 | 50, 51 | bitrd 188 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 53 | 52 | exbidv 1839 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 54 | 46, 53 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑎 = 𝑥 → ((((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 55 | 54 | cbvalv 1932 | 
. . . . . . 7
⊢
(∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 56 |   | simprll 537 | 
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℤ) | 
| 57 |   | zssq 9701 | 
. . . . . . . . . . . . 13
⊢ ℤ
⊆ ℚ | 
| 58 | 56, 57 | sstrdi 3195 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℚ) | 
| 59 |   | simprlr 538 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ∈ Fin) | 
| 60 |   | vex 2766 | 
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V | 
| 61 |   | nsuceq0g 4453 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ V → suc 𝑘 ≠ ∅) | 
| 62 | 60, 61 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢ suc 𝑘 ≠ ∅ | 
| 63 | 62 | neii 2369 | 
. . . . . . . . . . . . . 14
⊢  ¬
suc 𝑘 =
∅ | 
| 64 |   | simplrr 536 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 ≈ suc 𝑘) | 
| 65 | 64 | ensymd 6842 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ 𝑥) | 
| 66 |   | simpr 110 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 = ∅) | 
| 67 | 65, 66 | breqtrd 4059 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ ∅) | 
| 68 |   | en0 6854 | 
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑘 ≈ ∅ ↔
suc 𝑘 =
∅) | 
| 69 | 67, 68 | sylib 122 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 = ∅) | 
| 70 | 69 | ex 115 | 
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → (𝑥 = ∅ → suc 𝑘 = ∅)) | 
| 71 | 63, 70 | mtoi 665 | 
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ¬ 𝑥 = ∅) | 
| 72 | 71 | neqned 2374 | 
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ≠ ∅) | 
| 73 |   | fimaxq 10919 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ ℚ ∧ 𝑥 ∈ Fin ∧ 𝑥 ≠ ∅) →
∃𝑚 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) | 
| 74 | 58, 59, 72, 73 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑚 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) | 
| 75 |   | simplll 533 | 
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑘 ∈ ω) | 
| 76 |   | simpllr 534 | 
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) | 
| 77 | 56 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ⊆ ℤ) | 
| 78 | 59 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ∈ Fin) | 
| 79 |   | simplrr 536 | 
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑥 ≈ suc 𝑘) | 
| 80 |   | simprl 529 | 
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → 𝑚 ∈ 𝑥) | 
| 81 |   | simprr 531 | 
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚) | 
| 82 | 75, 76, 77, 78, 79, 80, 81 | zfz1isolem1 10932 | 
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑚)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) | 
| 83 | 74, 82 | rexlimddv 2619 | 
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) | 
| 84 | 83 | ex 115 | 
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 85 | 84 | alrimiv 1888 | 
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧
∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 86 | 85 | ex 115 | 
. . . . . . 7
⊢ (𝑘 ∈ ω →
(∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 87 | 55, 86 | biimtrrid 153 | 
. . . . . 6
⊢ (𝑘 ∈ ω →
(∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))) | 
| 88 | 8, 12, 16, 20, 41, 87 | finds 4636 | 
. . . . 5
⊢ (𝑛 ∈ ω →
∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 89 | 88 | adantr 276 | 
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))) | 
| 90 |   | simpr 110 | 
. . . 4
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) | 
| 91 |   | sseq1 3206 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ ℤ ↔ 𝐴 ⊆ ℤ)) | 
| 92 |   | eleq1 2259 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) | 
| 93 | 91, 92 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ↔ (𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin))) | 
| 94 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑛 ↔ 𝐴 ≈ 𝑛)) | 
| 95 | 93, 94 | anbi12d 473 | 
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) ↔ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛))) | 
| 96 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | 
| 97 | 96 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (1...(♯‘𝑥)) = (1...(♯‘𝐴))) | 
| 98 |   | isoeq4 5851 | 
. . . . . . . . 9
⊢
((1...(♯‘𝑥)) = (1...(♯‘𝐴)) → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥))) | 
| 99 | 97, 98 | syl 14 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥))) | 
| 100 |   | isoeq5 5852 | 
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) | 
| 101 | 99, 100 | bitrd 188 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) | 
| 102 | 101 | exbidv 1839 | 
. . . . . 6
⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))) | 
| 103 | 95, 102 | imbi12d 234 | 
. . . . 5
⊢ (𝑥 = 𝐴 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))) | 
| 104 | 103 | spcgv 2851 | 
. . . 4
⊢ (𝐴 ∈ Fin →
(∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))) | 
| 105 | 4, 89, 90, 104 | syl3c 63 | 
. . 3
⊢ ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≈ 𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 106 | 105 | an12s 565 | 
. 2
⊢ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 107 | 3, 106 | rexlimddv 2619 | 
1
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |