ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1iso GIF version

Theorem zfz1iso 10474
Description: A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
Assertion
Ref Expression
zfz1iso ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Distinct variable group:   𝐴,𝑓

Proof of Theorem zfz1iso
Dummy variables 𝑛 𝑥 𝑎 𝑘 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6609 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantl 273 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 simprlr 510 . . . 4 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → 𝐴 ∈ Fin)
5 breq2 3899 . . . . . . . . 9 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
65anbi2d 457 . . . . . . . 8 (𝑤 = ∅ → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅)))
76imbi1d 230 . . . . . . 7 (𝑤 = ∅ → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
87albidv 1778 . . . . . 6 (𝑤 = ∅ → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
9 breq2 3899 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑥𝑤𝑥𝑘))
109anbi2d 457 . . . . . . . 8 (𝑤 = 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘)))
1110imbi1d 230 . . . . . . 7 (𝑤 = 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
1211albidv 1778 . . . . . 6 (𝑤 = 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
13 breq2 3899 . . . . . . . . 9 (𝑤 = suc 𝑘 → (𝑥𝑤𝑥 ≈ suc 𝑘))
1413anbi2d 457 . . . . . . . 8 (𝑤 = suc 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)))
1514imbi1d 230 . . . . . . 7 (𝑤 = suc 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
1615albidv 1778 . . . . . 6 (𝑤 = suc 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
17 breq2 3899 . . . . . . . . 9 (𝑤 = 𝑛 → (𝑥𝑤𝑥𝑛))
1817anbi2d 457 . . . . . . . 8 (𝑤 = 𝑛 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛)))
1918imbi1d 230 . . . . . . 7 (𝑤 = 𝑛 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
2019albidv 1778 . . . . . 6 (𝑤 = 𝑛 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
21 iso0 5672 . . . . . . . . . 10 ∅ Isom < , < (∅, ∅)
22 en0 6643 . . . . . . . . . . . . . . . . 17 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
2322biimpi 119 . . . . . . . . . . . . . . . 16 (𝑥 ≈ ∅ → 𝑥 = ∅)
2423fveq2d 5379 . . . . . . . . . . . . . . 15 (𝑥 ≈ ∅ → (♯‘𝑥) = (♯‘∅))
25 hash0 10433 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
2624, 25syl6eq 2163 . . . . . . . . . . . . . 14 (𝑥 ≈ ∅ → (♯‘𝑥) = 0)
2726oveq2d 5744 . . . . . . . . . . . . 13 (𝑥 ≈ ∅ → (1...(♯‘𝑥)) = (1...0))
28 fz10 9716 . . . . . . . . . . . . 13 (1...0) = ∅
2927, 28syl6eq 2163 . . . . . . . . . . . 12 (𝑥 ≈ ∅ → (1...(♯‘𝑥)) = ∅)
30 isoeq4 5659 . . . . . . . . . . . 12 ((1...(♯‘𝑥)) = ∅ → (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅, 𝑥)))
3129, 30syl 14 . . . . . . . . . . 11 (𝑥 ≈ ∅ → (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅, 𝑥)))
32 isoeq5 5660 . . . . . . . . . . . 12 (𝑥 = ∅ → (∅ Isom < , < (∅, 𝑥) ↔ ∅ Isom < , < (∅, ∅)))
3323, 32syl 14 . . . . . . . . . . 11 (𝑥 ≈ ∅ → (∅ Isom < , < (∅, 𝑥) ↔ ∅ Isom < , < (∅, ∅)))
3431, 33bitrd 187 . . . . . . . . . 10 (𝑥 ≈ ∅ → (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅, ∅)))
3521, 34mpbiri 167 . . . . . . . . 9 (𝑥 ≈ ∅ → ∅ Isom < , < ((1...(♯‘𝑥)), 𝑥))
36 0ex 4015 . . . . . . . . . 10 ∅ ∈ V
37 isoeq1 5656 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < ((1...(♯‘𝑥)), 𝑥)))
3836, 37spcev 2751 . . . . . . . . 9 (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
3935, 38syl 14 . . . . . . . 8 (𝑥 ≈ ∅ → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
4039adantl 273 . . . . . . 7 (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
4140ax-gen 1408 . . . . . 6 𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
42 sseq1 3086 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎 ⊆ ℤ ↔ 𝑥 ⊆ ℤ))
43 eleq1 2177 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎 ∈ Fin ↔ 𝑥 ∈ Fin))
4442, 43anbi12d 462 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ↔ (𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin)))
45 breq1 3898 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎𝑘𝑥𝑘))
4644, 45anbi12d 462 . . . . . . . . 9 (𝑎 = 𝑥 → (((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘)))
47 fveq2 5375 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (♯‘𝑎) = (♯‘𝑥))
4847oveq2d 5744 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (1...(♯‘𝑎)) = (1...(♯‘𝑥)))
49 isoeq4 5659 . . . . . . . . . . . 12 ((1...(♯‘𝑎)) = (1...(♯‘𝑥)) → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎)))
5048, 49syl 14 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎)))
51 isoeq5 5660 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
5250, 51bitrd 187 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
5352exbidv 1779 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
5446, 53imbi12d 233 . . . . . . . 8 (𝑎 = 𝑥 → ((((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
5554cbvalv 1869 . . . . . . 7 (∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
56 simprll 509 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℤ)
57 zssq 9318 . . . . . . . . . . . . 13 ℤ ⊆ ℚ
5856, 57syl6ss 3075 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℚ)
59 simprlr 510 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ∈ Fin)
60 vex 2660 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
61 nsuceq0g 4300 . . . . . . . . . . . . . . . 16 (𝑘 ∈ V → suc 𝑘 ≠ ∅)
6260, 61ax-mp 7 . . . . . . . . . . . . . . 15 suc 𝑘 ≠ ∅
6362neii 2284 . . . . . . . . . . . . . 14 ¬ suc 𝑘 = ∅
64 simplrr 508 . . . . . . . . . . . . . . . . . 18 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 ≈ suc 𝑘)
6564ensymd 6631 . . . . . . . . . . . . . . . . 17 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘𝑥)
66 simpr 109 . . . . . . . . . . . . . . . . 17 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
6765, 66breqtrd 3919 . . . . . . . . . . . . . . . 16 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ ∅)
68 en0 6643 . . . . . . . . . . . . . . . 16 (suc 𝑘 ≈ ∅ ↔ suc 𝑘 = ∅)
6967, 68sylib 121 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 = ∅)
7069ex 114 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → (𝑥 = ∅ → suc 𝑘 = ∅))
7163, 70mtoi 636 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ¬ 𝑥 = ∅)
7271neqned 2289 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ≠ ∅)
73 fimaxq 10463 . . . . . . . . . . . 12 ((𝑥 ⊆ ℚ ∧ 𝑥 ∈ Fin ∧ 𝑥 ≠ ∅) → ∃𝑚𝑥𝑧𝑥 𝑧𝑚)
7458, 59, 72, 73syl3anc 1199 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑚𝑥𝑧𝑥 𝑧𝑚)
75 simplll 505 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑘 ∈ ω)
76 simpllr 506 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)))
7756adantr 272 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑥 ⊆ ℤ)
7859adantr 272 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑥 ∈ Fin)
79 simplrr 508 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑥 ≈ suc 𝑘)
80 simprl 503 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑚𝑥)
81 simprr 504 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → ∀𝑧𝑥 𝑧𝑚)
8275, 76, 77, 78, 79, 80, 81zfz1isolem1 10473 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
8374, 82rexlimddv 2528 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
8483ex 114 . . . . . . . . 9 ((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
8584alrimiv 1828 . . . . . . . 8 ((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
8685ex 114 . . . . . . 7 (𝑘 ∈ ω → (∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
8755, 86syl5bir 152 . . . . . 6 (𝑘 ∈ ω → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
888, 12, 16, 20, 41, 87finds 4474 . . . . 5 (𝑛 ∈ ω → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
8988adantr 272 . . . 4 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
90 simpr 109 . . . 4 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛))
91 sseq1 3086 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ⊆ ℤ ↔ 𝐴 ⊆ ℤ))
92 eleq1 2177 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
9391, 92anbi12d 462 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ↔ (𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin)))
94 breq1 3898 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑛𝐴𝑛))
9593, 94anbi12d 462 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) ↔ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)))
96 fveq2 5375 . . . . . . . . . 10 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
9796oveq2d 5744 . . . . . . . . 9 (𝑥 = 𝐴 → (1...(♯‘𝑥)) = (1...(♯‘𝐴)))
98 isoeq4 5659 . . . . . . . . 9 ((1...(♯‘𝑥)) = (1...(♯‘𝐴)) → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥)))
9997, 98syl 14 . . . . . . . 8 (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥)))
100 isoeq5 5660 . . . . . . . 8 (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))
10199, 100bitrd 187 . . . . . . 7 (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))
102101exbidv 1779 . . . . . 6 (𝑥 = 𝐴 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))
10395, 102imbi12d 233 . . . . 5 (𝑥 = 𝐴 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))))
104103spcgv 2744 . . . 4 (𝐴 ∈ Fin → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))))
1054, 89, 90, 104syl3c 63 . . 3 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
106105an12s 537 . 2 (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
1073, 106rexlimddv 2528 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1312   = wceq 1314  wex 1451  wcel 1463  wne 2282  wral 2390  wrex 2391  Vcvv 2657  wss 3037  c0 3329   class class class wbr 3895  suc csuc 4247  ωcom 4464  cfv 5081   Isom wiso 5082  (class class class)co 5728  cen 6586  Fincfn 6588  0cc0 7544  1c1 7545   < clt 7721  cle 7722  cz 8955  cq 9310  ...cfz 9680  chash 10411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7633  ax-resscn 7634  ax-1cn 7635  ax-1re 7636  ax-icn 7637  ax-addcl 7638  ax-addrcl 7639  ax-mulcl 7640  ax-mulrcl 7641  ax-addcom 7642  ax-mulcom 7643  ax-addass 7644  ax-mulass 7645  ax-distr 7646  ax-i2m1 7647  ax-0lt1 7648  ax-1rid 7649  ax-0id 7650  ax-rnegex 7651  ax-precex 7652  ax-cnre 7653  ax-pre-ltirr 7654  ax-pre-ltwlin 7655  ax-pre-lttrn 7656  ax-pre-apti 7657  ax-pre-ltadd 7658  ax-pre-mulgt0 7659  ax-pre-mulext 7660
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-frec 6242  df-1o 6267  df-oadd 6271  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-pnf 7723  df-mnf 7724  df-xr 7725  df-ltxr 7726  df-le 7727  df-sub 7855  df-neg 7856  df-reap 8252  df-ap 8259  df-div 8343  df-inn 8628  df-n0 8879  df-z 8956  df-uz 9226  df-q 9311  df-rp 9341  df-fz 9681  df-ihash 10412
This theorem is referenced by:  summodclem2  11040  zsumdc  11042
  Copyright terms: Public domain W3C validator