ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1iso GIF version

Theorem zfz1iso 10754
Description: A finite set of integers has an order isomorphism to a one-based finite sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
Assertion
Ref Expression
zfz1iso ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Distinct variable group:   𝐴,𝑓

Proof of Theorem zfz1iso
Dummy variables 𝑛 𝑥 𝑎 𝑘 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6727 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantl 275 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 simprlr 528 . . . 4 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → 𝐴 ∈ Fin)
5 breq2 3986 . . . . . . . . 9 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
65anbi2d 460 . . . . . . . 8 (𝑤 = ∅ → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅)))
76imbi1d 230 . . . . . . 7 (𝑤 = ∅ → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
87albidv 1812 . . . . . 6 (𝑤 = ∅ → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
9 breq2 3986 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑥𝑤𝑥𝑘))
109anbi2d 460 . . . . . . . 8 (𝑤 = 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘)))
1110imbi1d 230 . . . . . . 7 (𝑤 = 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
1211albidv 1812 . . . . . 6 (𝑤 = 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
13 breq2 3986 . . . . . . . . 9 (𝑤 = suc 𝑘 → (𝑥𝑤𝑥 ≈ suc 𝑘))
1413anbi2d 460 . . . . . . . 8 (𝑤 = suc 𝑘 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)))
1514imbi1d 230 . . . . . . 7 (𝑤 = suc 𝑘 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
1615albidv 1812 . . . . . 6 (𝑤 = suc 𝑘 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
17 breq2 3986 . . . . . . . . 9 (𝑤 = 𝑛 → (𝑥𝑤𝑥𝑛))
1817anbi2d 460 . . . . . . . 8 (𝑤 = 𝑛 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛)))
1918imbi1d 230 . . . . . . 7 (𝑤 = 𝑛 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
2019albidv 1812 . . . . . 6 (𝑤 = 𝑛 → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑤) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
21 iso0 5785 . . . . . . . . . 10 ∅ Isom < , < (∅, ∅)
22 en0 6761 . . . . . . . . . . . . . . . . 17 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
2322biimpi 119 . . . . . . . . . . . . . . . 16 (𝑥 ≈ ∅ → 𝑥 = ∅)
2423fveq2d 5490 . . . . . . . . . . . . . . 15 (𝑥 ≈ ∅ → (♯‘𝑥) = (♯‘∅))
25 hash0 10710 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
2624, 25eqtrdi 2215 . . . . . . . . . . . . . 14 (𝑥 ≈ ∅ → (♯‘𝑥) = 0)
2726oveq2d 5858 . . . . . . . . . . . . 13 (𝑥 ≈ ∅ → (1...(♯‘𝑥)) = (1...0))
28 fz10 9981 . . . . . . . . . . . . 13 (1...0) = ∅
2927, 28eqtrdi 2215 . . . . . . . . . . . 12 (𝑥 ≈ ∅ → (1...(♯‘𝑥)) = ∅)
30 isoeq4 5772 . . . . . . . . . . . 12 ((1...(♯‘𝑥)) = ∅ → (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅, 𝑥)))
3129, 30syl 14 . . . . . . . . . . 11 (𝑥 ≈ ∅ → (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅, 𝑥)))
32 isoeq5 5773 . . . . . . . . . . . 12 (𝑥 = ∅ → (∅ Isom < , < (∅, 𝑥) ↔ ∅ Isom < , < (∅, ∅)))
3323, 32syl 14 . . . . . . . . . . 11 (𝑥 ≈ ∅ → (∅ Isom < , < (∅, 𝑥) ↔ ∅ Isom < , < (∅, ∅)))
3431, 33bitrd 187 . . . . . . . . . 10 (𝑥 ≈ ∅ → (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < (∅, ∅)))
3521, 34mpbiri 167 . . . . . . . . 9 (𝑥 ≈ ∅ → ∅ Isom < , < ((1...(♯‘𝑥)), 𝑥))
36 0ex 4109 . . . . . . . . . 10 ∅ ∈ V
37 isoeq1 5769 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∅ Isom < , < ((1...(♯‘𝑥)), 𝑥)))
3836, 37spcev 2821 . . . . . . . . 9 (∅ Isom < , < ((1...(♯‘𝑥)), 𝑥) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
3935, 38syl 14 . . . . . . . 8 (𝑥 ≈ ∅ → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
4039adantl 275 . . . . . . 7 (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
4140ax-gen 1437 . . . . . 6 𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ ∅) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
42 sseq1 3165 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎 ⊆ ℤ ↔ 𝑥 ⊆ ℤ))
43 eleq1 2229 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎 ∈ Fin ↔ 𝑥 ∈ Fin))
4442, 43anbi12d 465 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ↔ (𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin)))
45 breq1 3985 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎𝑘𝑥𝑘))
4644, 45anbi12d 465 . . . . . . . . 9 (𝑎 = 𝑥 → (((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) ↔ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘)))
47 fveq2 5486 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (♯‘𝑎) = (♯‘𝑥))
4847oveq2d 5858 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (1...(♯‘𝑎)) = (1...(♯‘𝑥)))
49 isoeq4 5772 . . . . . . . . . . . 12 ((1...(♯‘𝑎)) = (1...(♯‘𝑥)) → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎)))
5048, 49syl 14 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎)))
51 isoeq5 5773 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
5250, 51bitrd 187 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
5352exbidv 1813 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
5446, 53imbi12d 233 . . . . . . . 8 (𝑎 = 𝑥 → ((((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
5554cbvalv 1905 . . . . . . 7 (∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) ↔ ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
56 simprll 527 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℤ)
57 zssq 9565 . . . . . . . . . . . . 13 ℤ ⊆ ℚ
5856, 57sstrdi 3154 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ⊆ ℚ)
59 simprlr 528 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ∈ Fin)
60 vex 2729 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
61 nsuceq0g 4396 . . . . . . . . . . . . . . . 16 (𝑘 ∈ V → suc 𝑘 ≠ ∅)
6260, 61ax-mp 5 . . . . . . . . . . . . . . 15 suc 𝑘 ≠ ∅
6362neii 2338 . . . . . . . . . . . . . 14 ¬ suc 𝑘 = ∅
64 simplrr 526 . . . . . . . . . . . . . . . . . 18 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 ≈ suc 𝑘)
6564ensymd 6749 . . . . . . . . . . . . . . . . 17 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘𝑥)
66 simpr 109 . . . . . . . . . . . . . . . . 17 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
6765, 66breqtrd 4008 . . . . . . . . . . . . . . . 16 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 ≈ ∅)
68 en0 6761 . . . . . . . . . . . . . . . 16 (suc 𝑘 ≈ ∅ ↔ suc 𝑘 = ∅)
6967, 68sylib 121 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ 𝑥 = ∅) → suc 𝑘 = ∅)
7069ex 114 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → (𝑥 = ∅ → suc 𝑘 = ∅))
7163, 70mtoi 654 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ¬ 𝑥 = ∅)
7271neqned 2343 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → 𝑥 ≠ ∅)
73 fimaxq 10740 . . . . . . . . . . . 12 ((𝑥 ⊆ ℚ ∧ 𝑥 ∈ Fin ∧ 𝑥 ≠ ∅) → ∃𝑚𝑥𝑧𝑥 𝑧𝑚)
7458, 59, 72, 73syl3anc 1228 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑚𝑥𝑧𝑥 𝑧𝑚)
75 simplll 523 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑘 ∈ ω)
76 simpllr 524 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)))
7756adantr 274 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑥 ⊆ ℤ)
7859adantr 274 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑥 ∈ Fin)
79 simplrr 526 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑥 ≈ suc 𝑘)
80 simprl 521 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → 𝑚𝑥)
81 simprr 522 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → ∀𝑧𝑥 𝑧𝑚)
8275, 76, 77, 78, 79, 80, 81zfz1isolem1 10753 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) ∧ (𝑚𝑥 ∧ ∀𝑧𝑥 𝑧𝑚)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
8374, 82rexlimddv 2588 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) ∧ ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))
8483ex 114 . . . . . . . . 9 ((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
8584alrimiv 1862 . . . . . . . 8 ((𝑘 ∈ ω ∧ ∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎))) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
8685ex 114 . . . . . . 7 (𝑘 ∈ ω → (∀𝑎(((𝑎 ⊆ ℤ ∧ 𝑎 ∈ Fin) ∧ 𝑎𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑎)), 𝑎)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
8755, 86syl5bir 152 . . . . . 6 (𝑘 ∈ ω → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥 ≈ suc 𝑘) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥))))
888, 12, 16, 20, 41, 87finds 4577 . . . . 5 (𝑛 ∈ ω → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
8988adantr 274 . . . 4 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → ∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)))
90 simpr 109 . . . 4 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛))
91 sseq1 3165 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ⊆ ℤ ↔ 𝐴 ⊆ ℤ))
92 eleq1 2229 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
9391, 92anbi12d 465 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ↔ (𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin)))
94 breq1 3985 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑛𝐴𝑛))
9593, 94anbi12d 465 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) ↔ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)))
96 fveq2 5486 . . . . . . . . . 10 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
9796oveq2d 5858 . . . . . . . . 9 (𝑥 = 𝐴 → (1...(♯‘𝑥)) = (1...(♯‘𝐴)))
98 isoeq4 5772 . . . . . . . . 9 ((1...(♯‘𝑥)) = (1...(♯‘𝐴)) → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥)))
9997, 98syl 14 . . . . . . . 8 (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥)))
100 isoeq5 5773 . . . . . . . 8 (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝐴)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))
10199, 100bitrd 187 . . . . . . 7 (𝑥 = 𝐴 → (𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))
102101exbidv 1813 . . . . . 6 (𝑥 = 𝐴 → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)))
10395, 102imbi12d 233 . . . . 5 (𝑥 = 𝐴 → ((((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) ↔ (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))))
104103spcgv 2813 . . . 4 (𝐴 ∈ Fin → (∀𝑥(((𝑥 ⊆ ℤ ∧ 𝑥 ∈ Fin) ∧ 𝑥𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑥)), 𝑥)) → (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))))
1054, 89, 90, 104syl3c 63 . . 3 ((𝑛 ∈ ω ∧ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ 𝐴𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
106105an12s 555 . 2 (((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
1073, 106rexlimddv 2588 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  wne 2336  wral 2444  wrex 2445  Vcvv 2726  wss 3116  c0 3409   class class class wbr 3982  suc csuc 4343  ωcom 4567  cfv 5188   Isom wiso 5189  (class class class)co 5842  cen 6704  Fincfn 6706  0cc0 7753  1c1 7754   < clt 7933  cle 7934  cz 9191  cq 9557  ...cfz 9944  chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-ihash 10689
This theorem is referenced by:  summodclem2  11323  zsumdc  11325  prodmodclem2  11518  zproddc  11520
  Copyright terms: Public domain W3C validator