ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccdil GIF version

Theorem iccdil 9774
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdil.1 (𝐴 · 𝑅) = 𝐶
iccdil.2 (𝐵 · 𝑅) = 𝐷
Assertion
Ref Expression
iccdil (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccdil
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rpre 9441 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
3 remulcl 7741 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 · 𝑅) ∈ ℝ)
42, 3sylan2 284 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 · 𝑅) ∈ ℝ)
51, 42thd 174 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
65adantl 275 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
7 elrp 9436 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
8 lemul1 8348 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
97, 8syl3an3b 1254 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1093expb 1182 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1110adantlr 468 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
12 iccdil.1 . . . . 5 (𝐴 · 𝑅) = 𝐶
1312breq1i 3931 . . . 4 ((𝐴 · 𝑅) ≤ (𝑋 · 𝑅) ↔ 𝐶 ≤ (𝑋 · 𝑅))
1411, 13syl6bb 195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 · 𝑅)))
15 lemul1 8348 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
167, 15syl3an3b 1254 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
17163expb 1182 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1817an12s 554 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1918adantll 467 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
20 iccdil.2 . . . . 5 (𝐵 · 𝑅) = 𝐷
2120breq2i 3932 . . . 4 ((𝑋 · 𝑅) ≤ (𝐵 · 𝑅) ↔ (𝑋 · 𝑅) ≤ 𝐷)
2219, 21syl6bb 195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ 𝐷))
236, 14, 223anbi123d 1290 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
24 elicc2 9714 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2524adantr 274 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
26 remulcl 7741 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 · 𝑅) ∈ ℝ)
2712, 26eqeltrrid 2225 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
28 remulcl 7741 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 · 𝑅) ∈ ℝ)
2920, 28eqeltrrid 2225 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
30 elicc2 9714 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3127, 29, 30syl2an 287 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3231anandirs 582 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
332, 32sylan2 284 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3433adantrl 469 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3523, 25, 343bitr4d 219 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3924  (class class class)co 5767  cr 7612  0cc0 7613   · cmul 7618   < clt 7793  cle 7794  +crp 9434  [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-rp 9435  df-icc 9671
This theorem is referenced by:  iccdili  9775  lincmb01cmp  9779  iccf1o  9780
  Copyright terms: Public domain W3C validator