ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neipsm GIF version

Theorem neipsm 12362
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neipsm ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Distinct variable groups:   𝐽,𝑝   𝑁,𝑝   𝑆,𝑝   𝑋,𝑝   𝑥,𝑝,𝑆
Allowed substitution hints:   𝐽(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem neipsm
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 3672 . . . . . 6 (𝑝𝑆 → {𝑝} ⊆ 𝑆)
2 neiss 12358 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ {𝑝} ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
31, 2syl3an3 1252 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑝𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
433exp 1181 . . . 4 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (𝑝𝑆𝑁 ∈ ((nei‘𝐽)‘{𝑝}))))
54ralrimdv 2514 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
653ad2ant1 1003 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
7 eleq1w 2201 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
87cbvexv 1891 . . . . . 6 (∃𝑝 𝑝𝑆 ↔ ∃𝑥 𝑥𝑆)
9 r19.28mv 3460 . . . . . 6 (∃𝑝 𝑝𝑆 → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
108, 9sylbir 134 . . . . 5 (∃𝑥 𝑥𝑆 → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
11103ad2ant3 1005 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
12 ssrab2 3187 . . . . . . . . . 10 {𝑣𝐽𝑣𝑁} ⊆ 𝐽
13 uniopn 12207 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝐽) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1412, 13mpan2 422 . . . . . . . . 9 (𝐽 ∈ Top → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1514ad2antrr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
16 sseq1 3125 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑔 → (𝑣𝑁𝑔𝑁))
1716elrab 2844 . . . . . . . . . . . . . . 15 (𝑔 ∈ {𝑣𝐽𝑣𝑁} ↔ (𝑔𝐽𝑔𝑁))
18 elunii 3749 . . . . . . . . . . . . . . 15 ((𝑝𝑔𝑔 ∈ {𝑣𝐽𝑣𝑁}) → 𝑝 {𝑣𝐽𝑣𝑁})
1917, 18sylan2br 286 . . . . . . . . . . . . . 14 ((𝑝𝑔 ∧ (𝑔𝐽𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
2019an12s 555 . . . . . . . . . . . . 13 ((𝑔𝐽 ∧ (𝑝𝑔𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
2120rexlimiva 2547 . . . . . . . . . . . 12 (∃𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑝 {𝑣𝐽𝑣𝑁})
2221ralimi 2498 . . . . . . . . . . 11 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
23 dfss3 3092 . . . . . . . . . . 11 (𝑆 {𝑣𝐽𝑣𝑁} ↔ ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
2422, 23sylibr 133 . . . . . . . . . 10 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑆 {𝑣𝐽𝑣𝑁})
2524adantl 275 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → 𝑆 {𝑣𝐽𝑣𝑁})
26 unissb 3774 . . . . . . . . . 10 ( {𝑣𝐽𝑣𝑁} ⊆ 𝑁 ↔ ∀ ∈ {𝑣𝐽𝑣𝑁}𝑁)
27 sseq1 3125 . . . . . . . . . . . 12 (𝑣 = → (𝑣𝑁𝑁))
2827elrab 2844 . . . . . . . . . . 11 ( ∈ {𝑣𝐽𝑣𝑁} ↔ (𝐽𝑁))
2928simprbi 273 . . . . . . . . . 10 ( ∈ {𝑣𝐽𝑣𝑁} → 𝑁)
3026, 29mprgbir 2493 . . . . . . . . 9 {𝑣𝐽𝑣𝑁} ⊆ 𝑁
3125, 30jctir 311 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
32 sseq2 3126 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑆𝑆 {𝑣𝐽𝑣𝑁}))
33 sseq1 3125 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑁 {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
3432, 33anbi12d 465 . . . . . . . . 9 ( = {𝑣𝐽𝑣𝑁} → ((𝑆𝑁) ↔ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)))
3534rspcev 2793 . . . . . . . 8 (( {𝑣𝐽𝑣𝑁} ∈ 𝐽 ∧ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)) → ∃𝐽 (𝑆𝑁))
3615, 31, 35syl2anc 409 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → ∃𝐽 (𝑆𝑁))
3736ex 114 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∃𝐽 (𝑆𝑁)))
3837anim2d 335 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
39383adant3 1002 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
4011, 39sylbid 149 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
41 ssel2 3097 . . . . . . 7 ((𝑆𝑋𝑝𝑆) → 𝑝𝑋)
42 neips.1 . . . . . . . 8 𝑋 = 𝐽
4342isneip 12354 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4441, 43sylan2 284 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑝𝑆)) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4544anassrs 398 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑝𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4645ralbidva 2434 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
47463adant3 1002 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4842isnei 12352 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
49483adant3 1002 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
5040, 47, 493imtr4d 202 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
516, 50impbid 128 1 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wex 1469  wcel 1481  wral 2417  wrex 2418  {crab 2421  wss 3076  {csn 3532   cuni 3744  cfv 5131  Topctop 12203  neicnei 12346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-top 12204  df-nei 12347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator