ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neipsm GIF version

Theorem neipsm 14474
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neipsm ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Distinct variable groups:   𝐽,𝑝   𝑁,𝑝   𝑆,𝑝   𝑋,𝑝   𝑥,𝑝,𝑆
Allowed substitution hints:   𝐽(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem neipsm
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 3767 . . . . . 6 (𝑝𝑆 → {𝑝} ⊆ 𝑆)
2 neiss 14470 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ {𝑝} ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
31, 2syl3an3 1284 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑝𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
433exp 1204 . . . 4 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (𝑝𝑆𝑁 ∈ ((nei‘𝐽)‘{𝑝}))))
54ralrimdv 2576 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
653ad2ant1 1020 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
7 eleq1w 2257 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
87cbvexv 1933 . . . . . 6 (∃𝑝 𝑝𝑆 ↔ ∃𝑥 𝑥𝑆)
9 r19.28mv 3544 . . . . . 6 (∃𝑝 𝑝𝑆 → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
108, 9sylbir 135 . . . . 5 (∃𝑥 𝑥𝑆 → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
11103ad2ant3 1022 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
12 ssrab2 3269 . . . . . . . . . 10 {𝑣𝐽𝑣𝑁} ⊆ 𝐽
13 uniopn 14321 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝐽) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1412, 13mpan2 425 . . . . . . . . 9 (𝐽 ∈ Top → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1514ad2antrr 488 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
16 sseq1 3207 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑔 → (𝑣𝑁𝑔𝑁))
1716elrab 2920 . . . . . . . . . . . . . . 15 (𝑔 ∈ {𝑣𝐽𝑣𝑁} ↔ (𝑔𝐽𝑔𝑁))
18 elunii 3845 . . . . . . . . . . . . . . 15 ((𝑝𝑔𝑔 ∈ {𝑣𝐽𝑣𝑁}) → 𝑝 {𝑣𝐽𝑣𝑁})
1917, 18sylan2br 288 . . . . . . . . . . . . . 14 ((𝑝𝑔 ∧ (𝑔𝐽𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
2019an12s 565 . . . . . . . . . . . . 13 ((𝑔𝐽 ∧ (𝑝𝑔𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
2120rexlimiva 2609 . . . . . . . . . . . 12 (∃𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑝 {𝑣𝐽𝑣𝑁})
2221ralimi 2560 . . . . . . . . . . 11 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
23 dfss3 3173 . . . . . . . . . . 11 (𝑆 {𝑣𝐽𝑣𝑁} ↔ ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
2422, 23sylibr 134 . . . . . . . . . 10 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑆 {𝑣𝐽𝑣𝑁})
2524adantl 277 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → 𝑆 {𝑣𝐽𝑣𝑁})
26 unissb 3870 . . . . . . . . . 10 ( {𝑣𝐽𝑣𝑁} ⊆ 𝑁 ↔ ∀ ∈ {𝑣𝐽𝑣𝑁}𝑁)
27 sseq1 3207 . . . . . . . . . . . 12 (𝑣 = → (𝑣𝑁𝑁))
2827elrab 2920 . . . . . . . . . . 11 ( ∈ {𝑣𝐽𝑣𝑁} ↔ (𝐽𝑁))
2928simprbi 275 . . . . . . . . . 10 ( ∈ {𝑣𝐽𝑣𝑁} → 𝑁)
3026, 29mprgbir 2555 . . . . . . . . 9 {𝑣𝐽𝑣𝑁} ⊆ 𝑁
3125, 30jctir 313 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
32 sseq2 3208 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑆𝑆 {𝑣𝐽𝑣𝑁}))
33 sseq1 3207 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑁 {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
3432, 33anbi12d 473 . . . . . . . . 9 ( = {𝑣𝐽𝑣𝑁} → ((𝑆𝑁) ↔ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)))
3534rspcev 2868 . . . . . . . 8 (( {𝑣𝐽𝑣𝑁} ∈ 𝐽 ∧ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)) → ∃𝐽 (𝑆𝑁))
3615, 31, 35syl2anc 411 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → ∃𝐽 (𝑆𝑁))
3736ex 115 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∃𝐽 (𝑆𝑁)))
3837anim2d 337 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
39383adant3 1019 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
4011, 39sylbid 150 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
41 ssel2 3179 . . . . . . 7 ((𝑆𝑋𝑝𝑆) → 𝑝𝑋)
42 neips.1 . . . . . . . 8 𝑋 = 𝐽
4342isneip 14466 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4441, 43sylan2 286 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑝𝑆)) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4544anassrs 400 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑝𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4645ralbidva 2493 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
47463adant3 1019 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4842isnei 14464 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
49483adant3 1019 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
5040, 47, 493imtr4d 203 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
516, 50impbid 129 1 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157  {csn 3623   cuni 3840  cfv 5259  Topctop 14317  neicnei 14458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-top 14318  df-nei 14459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator