ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neipsm GIF version

Theorem neipsm 12022
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
neipsm ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Distinct variable groups:   𝐽,𝑝   𝑁,𝑝   𝑆,𝑝   𝑋,𝑝   𝑥,𝑝,𝑆
Allowed substitution hints:   𝐽(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem neipsm
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 3603 . . . . . 6 (𝑝𝑆 → {𝑝} ⊆ 𝑆)
2 neiss 12018 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ {𝑝} ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
31, 2syl3an3 1216 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑝𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))
433exp 1145 . . . 4 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (𝑝𝑆𝑁 ∈ ((nei‘𝐽)‘{𝑝}))))
54ralrimdv 2464 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
653ad2ant1 967 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
7 eleq1w 2155 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
87cbvexv 1850 . . . . . 6 (∃𝑝 𝑝𝑆 ↔ ∃𝑥 𝑥𝑆)
9 r19.28mv 3394 . . . . . 6 (∃𝑝 𝑝𝑆 → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
108, 9sylbir 134 . . . . 5 (∃𝑥 𝑥𝑆 → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
11103ad2ant3 969 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁))))
12 ssrab2 3121 . . . . . . . . . 10 {𝑣𝐽𝑣𝑁} ⊆ 𝐽
13 uniopn 11868 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝐽) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1412, 13mpan2 417 . . . . . . . . 9 (𝐽 ∈ Top → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
1514ad2antrr 473 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → {𝑣𝐽𝑣𝑁} ∈ 𝐽)
16 sseq1 3062 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑔 → (𝑣𝑁𝑔𝑁))
1716elrab 2785 . . . . . . . . . . . . . . 15 (𝑔 ∈ {𝑣𝐽𝑣𝑁} ↔ (𝑔𝐽𝑔𝑁))
18 elunii 3680 . . . . . . . . . . . . . . 15 ((𝑝𝑔𝑔 ∈ {𝑣𝐽𝑣𝑁}) → 𝑝 {𝑣𝐽𝑣𝑁})
1917, 18sylan2br 283 . . . . . . . . . . . . . 14 ((𝑝𝑔 ∧ (𝑔𝐽𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
2019an12s 533 . . . . . . . . . . . . 13 ((𝑔𝐽 ∧ (𝑝𝑔𝑔𝑁)) → 𝑝 {𝑣𝐽𝑣𝑁})
2120rexlimiva 2497 . . . . . . . . . . . 12 (∃𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑝 {𝑣𝐽𝑣𝑁})
2221ralimi 2449 . . . . . . . . . . 11 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
23 dfss3 3029 . . . . . . . . . . 11 (𝑆 {𝑣𝐽𝑣𝑁} ↔ ∀𝑝𝑆 𝑝 {𝑣𝐽𝑣𝑁})
2422, 23sylibr 133 . . . . . . . . . 10 (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → 𝑆 {𝑣𝐽𝑣𝑁})
2524adantl 272 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → 𝑆 {𝑣𝐽𝑣𝑁})
26 unissb 3705 . . . . . . . . . 10 ( {𝑣𝐽𝑣𝑁} ⊆ 𝑁 ↔ ∀ ∈ {𝑣𝐽𝑣𝑁}𝑁)
27 sseq1 3062 . . . . . . . . . . . 12 (𝑣 = → (𝑣𝑁𝑁))
2827elrab 2785 . . . . . . . . . . 11 ( ∈ {𝑣𝐽𝑣𝑁} ↔ (𝐽𝑁))
2928simprbi 270 . . . . . . . . . 10 ( ∈ {𝑣𝐽𝑣𝑁} → 𝑁)
3026, 29mprgbir 2444 . . . . . . . . 9 {𝑣𝐽𝑣𝑁} ⊆ 𝑁
3125, 30jctir 307 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
32 sseq2 3063 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑆𝑆 {𝑣𝐽𝑣𝑁}))
33 sseq1 3062 . . . . . . . . . 10 ( = {𝑣𝐽𝑣𝑁} → (𝑁 {𝑣𝐽𝑣𝑁} ⊆ 𝑁))
3432, 33anbi12d 458 . . . . . . . . 9 ( = {𝑣𝐽𝑣𝑁} → ((𝑆𝑁) ↔ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)))
3534rspcev 2736 . . . . . . . 8 (( {𝑣𝐽𝑣𝑁} ∈ 𝐽 ∧ (𝑆 {𝑣𝐽𝑣𝑁} ∧ {𝑣𝐽𝑣𝑁} ⊆ 𝑁)) → ∃𝐽 (𝑆𝑁))
3615, 31, 35syl2anc 404 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → ∃𝐽 (𝑆𝑁))
3736ex 114 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁) → ∃𝐽 (𝑆𝑁)))
3837anim2d 331 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
39383adant3 966 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → ((𝑁𝑋 ∧ ∀𝑝𝑆𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
4011, 39sylbid 149 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁)) → (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
41 ssel2 3034 . . . . . . 7 ((𝑆𝑋𝑝𝑆) → 𝑝𝑋)
42 neips.1 . . . . . . . 8 𝑋 = 𝐽
4342isneip 12014 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑝𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4441, 43sylan2 281 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑝𝑆)) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4544anassrs 393 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑝𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4645ralbidva 2387 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
47463adant3 966 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝𝑆 (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑝𝑔𝑔𝑁))))
4842isnei 12012 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
49483adant3 966 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝐽 (𝑆𝑁))))
5040, 47, 493imtr4d 202 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
516, 50impbid 128 1 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ∃𝑥 𝑥𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 927   = wceq 1296  wex 1433  wcel 1445  wral 2370  wrex 2371  {crab 2374  wss 3013  {csn 3466   cuni 3675  cfv 5049  Topctop 11864  neicnei 12006
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-top 11865  df-nei 12007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator