| Step | Hyp | Ref
| Expression |
| 1 | | snssi 3767 |
. . . . . 6
⊢ (𝑝 ∈ 𝑆 → {𝑝} ⊆ 𝑆) |
| 2 | | neiss 14470 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ {𝑝} ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝})) |
| 3 | 1, 2 | syl3an3 1284 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑝 ∈ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘{𝑝})) |
| 4 | 3 | 3exp 1204 |
. . . 4
⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → (𝑝 ∈ 𝑆 → 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))) |
| 5 | 4 | ralrimdv 2576 |
. . 3
⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) |
| 6 | 5 | 3ad2ant1 1020 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) |
| 7 | | eleq1w 2257 |
. . . . . . 7
⊢ (𝑝 = 𝑥 → (𝑝 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
| 8 | 7 | cbvexv 1933 |
. . . . . 6
⊢
(∃𝑝 𝑝 ∈ 𝑆 ↔ ∃𝑥 𝑥 ∈ 𝑆) |
| 9 | | r19.28mv 3544 |
. . . . . 6
⊢
(∃𝑝 𝑝 ∈ 𝑆 → (∀𝑝 ∈ 𝑆 (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 10 | 8, 9 | sylbir 135 |
. . . . 5
⊢
(∃𝑥 𝑥 ∈ 𝑆 → (∀𝑝 ∈ 𝑆 (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 11 | 10 | 3ad2ant3 1022 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (∀𝑝 ∈ 𝑆 (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 12 | | ssrab2 3269 |
. . . . . . . . . 10
⊢ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝐽 |
| 13 | | uniopn 14321 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝐽) → ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ∈ 𝐽) |
| 14 | 12, 13 | mpan2 425 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top → ∪ {𝑣
∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ∈ 𝐽) |
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → ∪
{𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ∈ 𝐽) |
| 16 | | sseq1 3207 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑔 → (𝑣 ⊆ 𝑁 ↔ 𝑔 ⊆ 𝑁)) |
| 17 | 16 | elrab 2920 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ↔ (𝑔 ∈ 𝐽 ∧ 𝑔 ⊆ 𝑁)) |
| 18 | | elunii 3845 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ 𝑔 ∧ 𝑔 ∈ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) → 𝑝 ∈ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 19 | 17, 18 | sylan2br 288 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ 𝑔 ∧ (𝑔 ∈ 𝐽 ∧ 𝑔 ⊆ 𝑁)) → 𝑝 ∈ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 20 | 19 | an12s 565 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ 𝐽 ∧ (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → 𝑝 ∈ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 21 | 20 | rexlimiva 2609 |
. . . . . . . . . . . 12
⊢
(∃𝑔 ∈
𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) → 𝑝 ∈ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 22 | 21 | ralimi 2560 |
. . . . . . . . . . 11
⊢
(∀𝑝 ∈
𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∀𝑝 ∈ 𝑆 𝑝 ∈ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 23 | | dfss3 3173 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ ∪ {𝑣
∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ↔ ∀𝑝 ∈ 𝑆 𝑝 ∈ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 24 | 22, 23 | sylibr 134 |
. . . . . . . . . 10
⊢
(∀𝑝 ∈
𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) → 𝑆 ⊆ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 25 | 24 | adantl 277 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → 𝑆 ⊆ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}) |
| 26 | | unissb 3870 |
. . . . . . . . . 10
⊢ (∪ {𝑣
∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝑁 ↔ ∀ℎ ∈ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁}ℎ ⊆ 𝑁) |
| 27 | | sseq1 3207 |
. . . . . . . . . . . 12
⊢ (𝑣 = ℎ → (𝑣 ⊆ 𝑁 ↔ ℎ ⊆ 𝑁)) |
| 28 | 27 | elrab 2920 |
. . . . . . . . . . 11
⊢ (ℎ ∈ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ↔ (ℎ ∈ 𝐽 ∧ ℎ ⊆ 𝑁)) |
| 29 | 28 | simprbi 275 |
. . . . . . . . . 10
⊢ (ℎ ∈ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} → ℎ ⊆ 𝑁) |
| 30 | 26, 29 | mprgbir 2555 |
. . . . . . . . 9
⊢ ∪ {𝑣
∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝑁 |
| 31 | 25, 30 | jctir 313 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → (𝑆 ⊆ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ∧ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝑁)) |
| 32 | | sseq2 3208 |
. . . . . . . . . 10
⊢ (ℎ = ∪
{𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} → (𝑆 ⊆ ℎ ↔ 𝑆 ⊆ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁})) |
| 33 | | sseq1 3207 |
. . . . . . . . . 10
⊢ (ℎ = ∪
{𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} → (ℎ ⊆ 𝑁 ↔ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝑁)) |
| 34 | 32, 33 | anbi12d 473 |
. . . . . . . . 9
⊢ (ℎ = ∪
{𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} → ((𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁) ↔ (𝑆 ⊆ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ∧ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝑁))) |
| 35 | 34 | rspcev 2868 |
. . . . . . . 8
⊢ ((∪ {𝑣
∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ∈ 𝐽 ∧ (𝑆 ⊆ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ∧ ∪ {𝑣 ∈ 𝐽 ∣ 𝑣 ⊆ 𝑁} ⊆ 𝑁)) → ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) |
| 36 | 15, 31, 35 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)) |
| 37 | 36 | ex 115 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁))) |
| 38 | 37 | anim2d 337 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → (𝑁 ⊆ 𝑋 ∧ ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)))) |
| 39 | 38 | 3adant3 1019 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → ((𝑁 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑆 ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → (𝑁 ⊆ 𝑋 ∧ ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)))) |
| 40 | 11, 39 | sylbid 150 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (∀𝑝 ∈ 𝑆 (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) → (𝑁 ⊆ 𝑋 ∧ ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)))) |
| 41 | | ssel2 3179 |
. . . . . . 7
⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑆) → 𝑝 ∈ 𝑋) |
| 42 | | neips.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
| 43 | 42 | isneip 14466 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑝 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 44 | 41, 43 | sylan2 286 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑝 ∈ 𝑆)) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 45 | 44 | anassrs 400 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 46 | 45 | ralbidva 2493 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝 ∈ 𝑆 (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 47 | 46 | 3adant3 1019 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) ↔ ∀𝑝 ∈ 𝑆 (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑝 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
| 48 | 42 | isnei 14464 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)))) |
| 49 | 48 | 3adant3 1019 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃ℎ ∈ 𝐽 (𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁)))) |
| 50 | 40, 47, 49 | 3imtr4d 203 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
| 51 | 6, 50 | impbid 129 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ∃𝑥 𝑥 ∈ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) |