ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icccntr GIF version

Theorem icccntr 10104
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
icccntr.1 (𝐴 / 𝑅) = 𝐶
icccntr.2 (𝐵 / 𝑅) = 𝐷
Assertion
Ref Expression
icccntr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem icccntr
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rerpdivcl 9788 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 / 𝑅) ∈ ℝ)
31, 22thd 175 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
43adantl 277 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
5 elrp 9759 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
6 lediv1 8924 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
75, 6syl3an3b 1287 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
873expb 1206 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
98adantlr 477 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
10 icccntr.1 . . . . 5 (𝐴 / 𝑅) = 𝐶
1110breq1i 4050 . . . 4 ((𝐴 / 𝑅) ≤ (𝑋 / 𝑅) ↔ 𝐶 ≤ (𝑋 / 𝑅))
129, 11bitrdi 196 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 / 𝑅)))
13 lediv1 8924 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
145, 13syl3an3b 1287 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
15143expb 1206 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1615an12s 565 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1716adantll 476 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
18 icccntr.2 . . . . 5 (𝐵 / 𝑅) = 𝐷
1918breq2i 4051 . . . 4 ((𝑋 / 𝑅) ≤ (𝐵 / 𝑅) ↔ (𝑋 / 𝑅) ≤ 𝐷)
2017, 19bitrdi 196 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ 𝐷))
214, 12, 203anbi123d 1324 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
22 elicc2 10042 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2322adantr 276 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
24 rerpdivcl 9788 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴 / 𝑅) ∈ ℝ)
2510, 24eqeltrrid 2292 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐶 ∈ ℝ)
26 rerpdivcl 9788 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐵 / 𝑅) ∈ ℝ)
2718, 26eqeltrrid 2292 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ ℝ)
28 elicc2 10042 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
2925, 27, 28syl2an 289 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3029anandirs 593 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3130adantrl 478 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3221, 23, 313bitr4d 220 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907   < clt 8089  cle 8090   / cdiv 8727  +crp 9757  [,]cicc 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-rp 9758  df-icc 9999
This theorem is referenced by:  icccntri  10105
  Copyright terms: Public domain W3C validator