ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftl GIF version

Theorem iccshftl 10180
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftl.1 (𝐴𝑅) = 𝐶
iccshftl.2 (𝐵𝑅) = 𝐷
Assertion
Ref Expression
iccshftl (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccshftl
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝑋 ∈ ℝ)
2 resubcl 8398 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝑅) ∈ ℝ)
31, 22thd 175 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ ℝ ↔ (𝑋𝑅) ∈ ℝ))
43adantl 277 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ ℝ ↔ (𝑋𝑅) ∈ ℝ))
5 lesub1 8591 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
653expb 1228 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
76adantlr 477 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
8 iccshftl.1 . . . . 5 (𝐴𝑅) = 𝐶
98breq1i 4089 . . . 4 ((𝐴𝑅) ≤ (𝑋𝑅) ↔ 𝐶 ≤ (𝑋𝑅))
107, 9bitrdi 196 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋𝐶 ≤ (𝑋𝑅)))
11 lesub1 8591 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
12113expb 1228 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
1312an12s 565 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
1413adantll 476 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
15 iccshftl.2 . . . . 5 (𝐵𝑅) = 𝐷
1615breq2i 4090 . . . 4 ((𝑋𝑅) ≤ (𝐵𝑅) ↔ (𝑋𝑅) ≤ 𝐷)
1714, 16bitrdi 196 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ 𝐷))
184, 10, 173anbi123d 1346 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
19 elicc2 10122 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2019adantr 276 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
21 resubcl 8398 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑅) ∈ ℝ)
228, 21eqeltrrid 2317 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
23 resubcl 8398 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵𝑅) ∈ ℝ)
2415, 23eqeltrrid 2317 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
25 elicc2 10122 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2622, 24, 25syl2an 289 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2726anandirs 595 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2827adantrl 478 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2918, 20, 283bitr4d 220 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 5994  cr 7986  cle 8170  cmin 8305  [,]cicc 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-icc 10079
This theorem is referenced by:  iccshftli  10181  iccf1o  10188
  Copyright terms: Public domain W3C validator