ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftl GIF version

Theorem iccshftl 9926
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftl.1 (𝐴𝑅) = 𝐶
iccshftl.2 (𝐵𝑅) = 𝐷
Assertion
Ref Expression
iccshftl (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccshftl
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝑋 ∈ ℝ)
2 resubcl 8156 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝑅) ∈ ℝ)
31, 22thd 174 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ ℝ ↔ (𝑋𝑅) ∈ ℝ))
43adantl 275 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ ℝ ↔ (𝑋𝑅) ∈ ℝ))
5 lesub1 8348 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
653expb 1193 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
76adantlr 469 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
8 iccshftl.1 . . . . 5 (𝐴𝑅) = 𝐶
98breq1i 3986 . . . 4 ((𝐴𝑅) ≤ (𝑋𝑅) ↔ 𝐶 ≤ (𝑋𝑅))
107, 9bitrdi 195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋𝐶 ≤ (𝑋𝑅)))
11 lesub1 8348 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
12113expb 1193 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
1312an12s 555 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
1413adantll 468 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
15 iccshftl.2 . . . . 5 (𝐵𝑅) = 𝐷
1615breq2i 3987 . . . 4 ((𝑋𝑅) ≤ (𝐵𝑅) ↔ (𝑋𝑅) ≤ 𝐷)
1714, 16bitrdi 195 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ 𝐷))
184, 10, 173anbi123d 1301 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
19 elicc2 9868 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2019adantr 274 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
21 resubcl 8156 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑅) ∈ ℝ)
228, 21eqeltrrid 2252 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
23 resubcl 8156 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵𝑅) ∈ ℝ)
2415, 23eqeltrrid 2252 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
25 elicc2 9868 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2622, 24, 25syl2an 287 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2726anandirs 583 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2827adantrl 470 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2918, 20, 283bitr4d 219 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135   class class class wbr 3979  (class class class)co 5839  cr 7746  cle 7928  cmin 8063  [,]cicc 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-addass 7849  ax-distr 7851  ax-i2m1 7852  ax-0id 7855  ax-rnegex 7856  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-ltadd 7863
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-po 4271  df-iso 4272  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-icc 9825
This theorem is referenced by:  iccshftli  9927  iccf1o  9934
  Copyright terms: Public domain W3C validator