Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov2 GIF version

Theorem eqfnov2 5878
 Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
eqfnov2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem eqfnov2
StepHypRef Expression
1 eqfnov 5877 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
2 simpr 109 . . 3 (((𝐴 × 𝐵) = (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) → ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 eqidd 2140 . . . 4 (∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → (𝐴 × 𝐵) = (𝐴 × 𝐵))
43ancri 322 . . 3 (∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → ((𝐴 × 𝐵) = (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
52, 4impbii 125 . 2 (((𝐴 × 𝐵) = (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
61, 5syl6bb 195 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331  ∀wral 2416   × cxp 4537   Fn wfn 5118  (class class class)co 5774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-ov 5777 This theorem is referenced by:  fnmpoovd  6112  tpossym  6173
 Copyright terms: Public domain W3C validator