| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trsuc | GIF version | ||
| Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 4470 | . . . . . 6 ⊢ 𝐵 ⊆ suc 𝐵 | |
| 2 | ssexg 4191 | . . . . . 6 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
| 3 | 1, 2 | mpan 424 | . . . . 5 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
| 4 | sucidg 4471 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
| 5 | 3, 4 | syl 14 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
| 6 | 5 | ancri 324 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
| 7 | trel 4157 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
| 8 | 6, 7 | syl5 32 | . 2 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 9 | 8 | imp 124 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 Tr wtr 4150 suc csuc 4420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-uni 3857 df-tr 4151 df-suc 4426 |
| This theorem is referenced by: nnnninf 7243 |
| Copyright terms: Public domain | W3C validator |