ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsuc GIF version

Theorem trsuc 4477
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 sssucid 4470 . . . . . 6 𝐵 ⊆ suc 𝐵
2 ssexg 4191 . . . . . 6 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
31, 2mpan 424 . . . . 5 (suc 𝐵𝐴𝐵 ∈ V)
4 sucidg 4471 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
53, 4syl 14 . . . 4 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
65ancri 324 . . 3 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
7 trel 4157 . . 3 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
86, 7syl5 32 . 2 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
98imp 124 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Vcvv 2773  wss 3170  Tr wtr 4150  suc csuc 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-uni 3857  df-tr 4151  df-suc 4426
This theorem is referenced by:  nnnninf  7243
  Copyright terms: Public domain W3C validator