ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsuc GIF version

Theorem trsuc 4457
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 sssucid 4450 . . . . . 6 𝐵 ⊆ suc 𝐵
2 ssexg 4172 . . . . . 6 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
31, 2mpan 424 . . . . 5 (suc 𝐵𝐴𝐵 ∈ V)
4 sucidg 4451 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
53, 4syl 14 . . . 4 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
65ancri 324 . . 3 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
7 trel 4138 . . 3 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
86, 7syl5 32 . 2 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
98imp 124 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  Vcvv 2763  wss 3157  Tr wtr 4131  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-suc 4406
This theorem is referenced by:  nnnninf  7192
  Copyright terms: Public domain W3C validator