Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trsuc | GIF version |
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid 4374 | . . . . . 6 ⊢ 𝐵 ⊆ suc 𝐵 | |
2 | ssexg 4103 | . . . . . 6 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
3 | 1, 2 | mpan 421 | . . . . 5 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
4 | sucidg 4375 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
5 | 3, 4 | syl 14 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
6 | 5 | ancri 322 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
7 | trel 4069 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
8 | 6, 7 | syl5 32 | . 2 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
9 | 8 | imp 123 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 Tr wtr 4062 suc csuc 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-uni 3773 df-tr 4063 df-suc 4330 |
This theorem is referenced by: nnnninf 7058 |
Copyright terms: Public domain | W3C validator |