ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsuc GIF version

Theorem trsuc 4424
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 sssucid 4417 . . . . . 6 𝐵 ⊆ suc 𝐵
2 ssexg 4144 . . . . . 6 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
31, 2mpan 424 . . . . 5 (suc 𝐵𝐴𝐵 ∈ V)
4 sucidg 4418 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
53, 4syl 14 . . . 4 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
65ancri 324 . . 3 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
7 trel 4110 . . 3 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
86, 7syl5 32 . 2 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
98imp 124 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  Vcvv 2739  wss 3131  Tr wtr 4103  suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-uni 3812  df-tr 4104  df-suc 4373
This theorem is referenced by:  nnnninf  7126
  Copyright terms: Public domain W3C validator