ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trsuc GIF version

Theorem trsuc 4468
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 sssucid 4461 . . . . . 6 𝐵 ⊆ suc 𝐵
2 ssexg 4182 . . . . . 6 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
31, 2mpan 424 . . . . 5 (suc 𝐵𝐴𝐵 ∈ V)
4 sucidg 4462 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
53, 4syl 14 . . . 4 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
65ancri 324 . . 3 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
7 trel 4148 . . 3 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
86, 7syl5 32 . 2 (Tr 𝐴 → (suc 𝐵𝐴𝐵𝐴))
98imp 124 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  Vcvv 2771  wss 3165  Tr wtr 4141  suc csuc 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-uni 3850  df-tr 4142  df-suc 4417
This theorem is referenced by:  nnnninf  7227
  Copyright terms: Public domain W3C validator