![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trsuc | GIF version |
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
trsuc | ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid 4446 | . . . . . 6 ⊢ 𝐵 ⊆ suc 𝐵 | |
2 | ssexg 4168 | . . . . . 6 ⊢ ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ V) | |
3 | 1, 2 | mpan 424 | . . . . 5 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
4 | sucidg 4447 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ suc 𝐵) | |
5 | 3, 4 | syl 14 | . . . 4 ⊢ (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ suc 𝐵) |
6 | 5 | ancri 324 | . . 3 ⊢ (suc 𝐵 ∈ 𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴)) |
7 | trel 4134 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
8 | 6, 7 | syl5 32 | . 2 ⊢ (Tr 𝐴 → (suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
9 | 8 | imp 124 | 1 ⊢ ((Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 Tr wtr 4127 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-uni 3836 df-tr 4128 df-suc 4402 |
This theorem is referenced by: nnnninf 7185 |
Copyright terms: Public domain | W3C validator |