ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubt GIF version

Theorem mosubt 2916
Description: "At most one" remains true after substitution. (Contributed by Jim Kingdon, 18-Jan-2019.)
Assertion
Ref Expression
mosubt (∀𝑦∃*𝑥𝜑 → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mosubt
StepHypRef Expression
1 eueq 2910 . . . . . 6 (𝐴 ∈ V ↔ ∃!𝑦 𝑦 = 𝐴)
2 isset 2745 . . . . . 6 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
31, 2bitr3i 186 . . . . 5 (∃!𝑦 𝑦 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)
4 nfv 1528 . . . . . 6 𝑥 𝑦 = 𝐴
54euexex 2111 . . . . 5 ((∃!𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
63, 5sylanbr 285 . . . 4 ((∃𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
76expcom 116 . . 3 (∀𝑦∃*𝑥𝜑 → (∃𝑦 𝑦 = 𝐴 → ∃*𝑥𝑦(𝑦 = 𝐴𝜑)))
8 moanimv 2101 . . 3 (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴𝜑)) ↔ (∃𝑦 𝑦 = 𝐴 → ∃*𝑥𝑦(𝑦 = 𝐴𝜑)))
97, 8sylibr 134 . 2 (∀𝑦∃*𝑥𝜑 → ∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴𝜑)))
10 simpl 109 . . . . 5 ((𝑦 = 𝐴𝜑) → 𝑦 = 𝐴)
1110eximi 1600 . . . 4 (∃𝑦(𝑦 = 𝐴𝜑) → ∃𝑦 𝑦 = 𝐴)
1211ancri 324 . . 3 (∃𝑦(𝑦 = 𝐴𝜑) → (∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴𝜑)))
1312moimi 2091 . 2 (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴𝜑)) → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
149, 13syl 14 1 (∀𝑦∃*𝑥𝜑 → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1351   = wceq 1353  wex 1492  ∃!weu 2026  ∃*wmo 2027  wcel 2148  Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  mosub  2917
  Copyright terms: Public domain W3C validator