| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosubt | GIF version | ||
| Description: "At most one" remains true after substitution. (Contributed by Jim Kingdon, 18-Jan-2019.) |
| Ref | Expression |
|---|---|
| mosubt | ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq 2974 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ ∃!𝑦 𝑦 = 𝐴) | |
| 2 | isset 2806 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 3 | 1, 2 | bitr3i 186 | . . . . 5 ⊢ (∃!𝑦 𝑦 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) |
| 4 | nfv 1574 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
| 5 | 4 | euexex 2163 | . . . . 5 ⊢ ((∃!𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 6 | 3, 5 | sylanbr 285 | . . . 4 ⊢ ((∃𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 7 | 6 | expcom 116 | . . 3 ⊢ (∀𝑦∃*𝑥𝜑 → (∃𝑦 𝑦 = 𝐴 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 8 | moanimv 2153 | . . 3 ⊢ (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) ↔ (∃𝑦 𝑦 = 𝐴 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 10 | simpl 109 | . . . . 5 ⊢ ((𝑦 = 𝐴 ∧ 𝜑) → 𝑦 = 𝐴) | |
| 11 | 10 | eximi 1646 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → ∃𝑦 𝑦 = 𝐴) |
| 12 | 11 | ancri 324 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → (∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 13 | 12 | moimi 2143 | . 2 ⊢ (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 14 | 9, 13 | syl 14 | 1 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 = wceq 1395 ∃wex 1538 ∃!weu 2077 ∃*wmo 2078 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: mosub 2981 |
| Copyright terms: Public domain | W3C validator |