| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosubt | GIF version | ||
| Description: "At most one" remains true after substitution. (Contributed by Jim Kingdon, 18-Jan-2019.) |
| Ref | Expression |
|---|---|
| mosubt | ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq 2951 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ ∃!𝑦 𝑦 = 𝐴) | |
| 2 | isset 2783 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 3 | 1, 2 | bitr3i 186 | . . . . 5 ⊢ (∃!𝑦 𝑦 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) |
| 4 | nfv 1552 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
| 5 | 4 | euexex 2141 | . . . . 5 ⊢ ((∃!𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 6 | 3, 5 | sylanbr 285 | . . . 4 ⊢ ((∃𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 7 | 6 | expcom 116 | . . 3 ⊢ (∀𝑦∃*𝑥𝜑 → (∃𝑦 𝑦 = 𝐴 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 8 | moanimv 2131 | . . 3 ⊢ (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) ↔ (∃𝑦 𝑦 = 𝐴 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) | |
| 9 | 7, 8 | sylibr 134 | . 2 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 10 | simpl 109 | . . . . 5 ⊢ ((𝑦 = 𝐴 ∧ 𝜑) → 𝑦 = 𝐴) | |
| 11 | 10 | eximi 1624 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → ∃𝑦 𝑦 = 𝐴) |
| 12 | 11 | ancri 324 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → (∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
| 13 | 12 | moimi 2121 | . 2 ⊢ (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| 14 | 9, 13 | syl 14 | 1 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∃wex 1516 ∃!weu 2055 ∃*wmo 2056 ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: mosub 2958 |
| Copyright terms: Public domain | W3C validator |