ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzp1 GIF version

Theorem hashfzp1 10411
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
hashfzp1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzp1
StepHypRef Expression
1 eluzel2 9181 . . . 4 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 eluzelz 9185 . . . 4 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
3 zdceq 8978 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
41, 2, 3syl2anc 406 . . 3 (𝐵 ∈ (ℤ𝐴) → DECID 𝐴 = 𝐵)
5 exmiddc 788 . . 3 (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
64, 5syl 14 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
7 hash0 10384 . . . . 5 (♯‘∅) = 0
8 eluzelre 9186 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
98ltp1d 8546 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 < (𝐵 + 1))
10 peano2z 8942 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
1110ancri 320 . . . . . . . 8 (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ))
12 fzn 9663 . . . . . . . 8 (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
132, 11, 123syl 17 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
149, 13mpbid 146 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → ((𝐵 + 1)...𝐵) = ∅)
1514fveq2d 5357 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅))
162zcnd 9026 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1716subidd 7932 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐵) = 0)
187, 15, 173eqtr4a 2158 . . . 4 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵))
19 oveq1 5713 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1))
2019oveq1d 5721 . . . . . 6 (𝐴 = 𝐵 → ((𝐴 + 1)...𝐵) = ((𝐵 + 1)...𝐵))
2120fveq2d 5357 . . . . 5 (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵)))
22 oveq2 5714 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
2321, 22eqeq12d 2114 . . . 4 (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵)))
2418, 23syl5ibr 155 . . 3 (𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
25 uzp1 9209 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))))
26 pm2.24 591 . . . . . . . . . 10 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2726eqcoms 2103 . . . . . . . . 9 (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
28 ax-1 5 . . . . . . . . 9 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2927, 28jaoi 677 . . . . . . . 8 ((𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
3025, 29syl 14 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
3130impcom 124 . . . . . 6 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ‘(𝐴 + 1)))
32 hashfz 10408 . . . . . 6 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
3331, 32syl 14 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
341zcnd 9026 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
35 1cnd 7654 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
3616, 34, 35nppcan2d 7970 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3736adantl 273 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3833, 37eqtrd 2132 . . . 4 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
3938ex 114 . . 3 𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
4024, 39jaoi 677 . 2 ((𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵) → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
416, 40mpcom 36 1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 670  DECID wdc 786   = wceq 1299  wcel 1448  c0 3310   class class class wbr 3875  cfv 5059  (class class class)co 5706  0cc0 7500  1c1 7501   + caddc 7503   < clt 7672  cmin 7804  cz 8906  cuz 9176  ...cfz 9631  chash 10362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-1o 6243  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632  df-ihash 10363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator