Proof of Theorem hashfzp1
Step | Hyp | Ref
| Expression |
1 | | eluzel2 9471 |
. . . 4
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐴 ∈ ℤ) |
2 | | eluzelz 9475 |
. . . 4
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐵 ∈ ℤ) |
3 | | zdceq 9266 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
DECID 𝐴 =
𝐵) |
4 | 1, 2, 3 | syl2anc 409 |
. . 3
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → DECID 𝐴 = 𝐵) |
5 | | exmiddc 826 |
. . 3
⊢
(DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
6 | 4, 5 | syl 14 |
. 2
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
7 | | hash0 10710 |
. . . . 5
⊢
(♯‘∅) = 0 |
8 | | eluzelre 9476 |
. . . . . . . 8
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐵 ∈ ℝ) |
9 | 8 | ltp1d 8825 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐵 < (𝐵 + 1)) |
10 | | peano2z 9227 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈
ℤ) |
11 | 10 | ancri 322 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈
ℤ)) |
12 | | fzn 9977 |
. . . . . . . 8
⊢ (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) |
13 | 2, 11, 12 | 3syl 17 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) |
14 | 9, 13 | mpbid 146 |
. . . . . 6
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → ((𝐵 + 1)...𝐵) = ∅) |
15 | 14 | fveq2d 5490 |
. . . . 5
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) =
(♯‘∅)) |
16 | 2 | zcnd 9314 |
. . . . . 6
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
17 | 16 | subidd 8197 |
. . . . 5
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (𝐵 − 𝐵) = 0) |
18 | 7, 15, 17 | 3eqtr4a 2225 |
. . . 4
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵)) |
19 | | oveq1 5849 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1)) |
20 | 19 | oveq1d 5857 |
. . . . . 6
⊢ (𝐴 = 𝐵 → ((𝐴 + 1)...𝐵) = ((𝐵 + 1)...𝐵)) |
21 | 20 | fveq2d 5490 |
. . . . 5
⊢ (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵))) |
22 | | oveq2 5850 |
. . . . 5
⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) |
23 | 21, 22 | eqeq12d 2180 |
. . . 4
⊢ (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵))) |
24 | 18, 23 | syl5ibr 155 |
. . 3
⊢ (𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
25 | | uzp1 9499 |
. . . . . . . 8
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
26 | | pm2.24 611 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
27 | 26 | eqcoms 2168 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
28 | | ax-1 6 |
. . . . . . . . 9
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
29 | 27, 28 | jaoi 706 |
. . . . . . . 8
⊢ ((𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
30 | 25, 29 | syl 14 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
31 | 30 | impcom 124 |
. . . . . 6
⊢ ((¬
𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) |
32 | | hashfz 10734 |
. . . . . 6
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) |
33 | 31, 32 | syl 14 |
. . . . 5
⊢ ((¬
𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) |
34 | 1 | zcnd 9314 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
35 | | 1cnd 7915 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 1 ∈ ℂ) |
36 | 16, 34, 35 | nppcan2d 8235 |
. . . . . 6
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
37 | 36 | adantl 275 |
. . . . 5
⊢ ((¬
𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
38 | 33, 37 | eqtrd 2198 |
. . . 4
⊢ ((¬
𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
39 | 38 | ex 114 |
. . 3
⊢ (¬
𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
40 | 24, 39 | jaoi 706 |
. 2
⊢ ((𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵) → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
41 | 6, 40 | mpcom 36 |
1
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |