ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzp1 GIF version

Theorem hashfzp1 10132
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
hashfzp1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzp1
StepHypRef Expression
1 eluzel2 8959 . . . 4 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 eluzelz 8963 . . . 4 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
3 zdceq 8758 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
41, 2, 3syl2anc 403 . . 3 (𝐵 ∈ (ℤ𝐴) → DECID 𝐴 = 𝐵)
5 exmiddc 780 . . 3 (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
64, 5syl 14 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
7 hash0 10105 . . . . 5 (♯‘∅) = 0
8 eluzelre 8964 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
98ltp1d 8329 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 < (𝐵 + 1))
10 peano2z 8722 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
1110ancri 317 . . . . . . . 8 (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ))
12 fzn 9391 . . . . . . . 8 (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
132, 11, 123syl 17 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
149, 13mpbid 145 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → ((𝐵 + 1)...𝐵) = ∅)
1514fveq2d 5274 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅))
162zcnd 8805 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1716subidd 7728 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐵) = 0)
187, 15, 173eqtr4a 2143 . . . 4 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵))
19 oveq1 5622 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1))
2019oveq1d 5630 . . . . . 6 (𝐴 = 𝐵 → ((𝐴 + 1)...𝐵) = ((𝐵 + 1)...𝐵))
2120fveq2d 5274 . . . . 5 (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵)))
22 oveq2 5623 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
2321, 22eqeq12d 2099 . . . 4 (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵)))
2418, 23syl5ibr 154 . . 3 (𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
25 uzp1 8987 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))))
26 pm2.24 584 . . . . . . . . . 10 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2726eqcoms 2088 . . . . . . . . 9 (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
28 ax-1 5 . . . . . . . . 9 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2927, 28jaoi 669 . . . . . . . 8 ((𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
3025, 29syl 14 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
3130impcom 123 . . . . . 6 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ‘(𝐴 + 1)))
32 hashfz 10129 . . . . . 6 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
3331, 32syl 14 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
341zcnd 8805 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
35 1cnd 7451 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
3616, 34, 35nppcan2d 7766 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3736adantl 271 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3833, 37eqtrd 2117 . . . 4 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
3938ex 113 . . 3 𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
4024, 39jaoi 669 . 2 ((𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵) → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
416, 40mpcom 36 1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  DECID wdc 778   = wceq 1287  wcel 1436  c0 3275   class class class wbr 3822  cfv 4983  (class class class)co 5615  0cc0 7297  1c1 7298   + caddc 7300   < clt 7469  cmin 7600  cz 8686  cuz 8954  ...cfz 9359  chash 10083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-addcom 7392  ax-addass 7394  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-0id 7400  ax-rnegex 7401  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-1o 6137  df-er 6246  df-en 6412  df-dom 6413  df-fin 6414  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-inn 8361  df-n0 8610  df-z 8687  df-uz 8955  df-fz 9360  df-ihash 10084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator